954 resultados para Solids Wastes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The great demand for animal protein was responsible for the increase on the broilers production and hence, the generation of waste from the poultry slaughter was increased as well, which in turn, propelled the development of techniques that allow the reuse and recycling of these wastes. The objective of this study was to evaluate the efficiency of composting on the treatment and recycling of solid waste from poultry slaughterhouse. The solid waste was from a commercial poultry slaughterhouse and was composed of viscera, muscle, fat, bone, blood and feathers that was mixed with a source of carbon, rice husk. Initially, a windrow with a volume of 1.5m(3) was built, and then some parameters were monitored: temperature, total solids (TS), volatile (VS), N, P, K, organic carbon (C), composting organic matter (COC), organic matter resistant to composting (MORC), chemical oxygen demand (COD), mass and volume of the windrow, most probable number (MPN) of total and fecal coliforms, as well as their reductions during the process. The maximum temperature reached in the center of the windrow was 53.3 degrees C (weekly average) since reductions of weight of TS and VS and volume during the pre-composting were 36.1, 44.3 and 23.3%, respectively and during the composting process was 21.8, 23.8 and 4.4%. The low volume reduction can be associated with high concentrations of MORC (40.1%) which can be mainly related to the quality of the carbon source. The process produced satisfactory total reductions of TS, VS and volume that were respectively, 50.1, 57.5 and 26.7%. However reductions were observed in 43% of amount of nitrogen in the final compound. Despite reductions in nitrogen content, composting proved to be an effective method in the treatment of solid waste from poultry slaughterhouse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Patients with Crohn's disease (CD) have been shown to present dyspeptic symptoms more frequently than the general population. Some of these symptoms could be related to motility disorders to some degree. Then, we propose to investigate whether gastric emptying of solids in patients with inactive CD is delayed and to determine the relationships between gastric emptying and dyspeptic symptoms in inactive CD. Methods: Twenty-six patients with inactive Crohn's disease, as defined by a Crohn's Disease Activity Index (CDAI) < 150, underwent a gastric emptying test by breath test using C-13 octanoic acid coupled to a solid meal and answered a validated questionnaire (The Porto Alegre Dyspeptic Symptoms Questionnaire) to assess dyspeptic symptoms. Patients with scores >= 6 were considered to have dyspepsia. The control group was composed by 19 age-and sex-matched healthy volunteers. Results: Patients with CD had a significantly longer t 1/2 and t lag (p<0.05) than the controls. CD patients with dyspepsia had significantly (p<0.05) prolonged gastric emptying when compared to patients without dyspeptic symptoms. When the individual symptom patterns were analyzed, only vomiting was significantly associated with delayed gastric emptying (p<0.05). There was no difference between the subgroups of patients with respect to gender, CDAI scores, disease location, clinical behavior (obstructive/obstructive) or previous gastrointestinal surgery. Conclusion: Delayed gastric emptying in inactive Crohn's disease patients seems to be associated with dyspeptic symptoms, particularly vomiting, even without any evidence of gastrointestinal obstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The worldwide production of bamboo generates large volumes of leaf wastes, which are deposited in landfills or burned in an uncontrolled manner, with negative effects in the environment. The ash obtained by calcining of the bamboo leaf waste, shows good qualities as supplementary cementing material for the production of blended cements. The current paper shows a detailed scientific study of a Brazilian bamboo leaf ash (BLA) calcined at 600 degrees C in small scale condition, by using different techniques (XRF, XRD, SEM/EDX, FT-IR, TG/DTG) and technical study in order. to analyse the behaviour of this ash in blended cements elaborated with 10% and 20% by mass of BLA. The results stated that this ash shows a very high pozzolanic activity, with a reaction rate constant K of the order of 10(-1)/h and type I CSH gel was the main hydrated phase obtained from pozzolanic reaction. The BLA blended cements (10% and 20%) complied with the physical and mechanical requirements of the existing European standards. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant amounts of wastes are generated by the coffee industry, among of which, coffee silverskin (CS) and spent coffee grounds (SCG) are the most abundantly generated during the beans roasting and instant coffee preparation, respectively. This study evaluated the sugars metabolism and production of ethanol by three different yeast strains (Saccharomyces cerevisiae, Pichia stipitis and Kluyveromyces fragilis) when cultivated in sugar rich hydrolysates produced by acid hydrolysis of CS and SCG. S. cerevisiae provided the best ethanol production from SCG hydrolysate (11.7 g/l, 50.2% efficiency). On the other hand, insignificant (<= 1.0 g/l) ethanol production was obtained from CS hydrolysate, for all the evaluated yeast strains, probably due to the low sugars concentration present in this medium (approx. 22 g/l). It was concluded that it is possible to reuse SCG as raw material for ethanol production, which is of great interest for the production of this biofuel, as well as to add value to this agro-industrial waste. CS hydrolysate, in the way that is produced, was not a suitable fermentation medium for ethanol production; however, the hydrolysate concentration for the sugars content increase previous the use as fermentation medium could be an alternative to overcome this problem. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the synthesis of carbon nanomaterials (CNMs) by up-cycling common solid wastes. These feedstocks could supersede the use of costly and often toxic or highly flammable chemicals, such as hydrocarbon gases, carbon monoxide, and hydrogen, which are commonly used as feedstocks in current nanomanufacturing processes for CNMs. Agricultural sugar cane bagasse and corn residues, scrap tire chips, and postconsumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings were either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation. The resulting gaseous carbon-bearing effluents were then channeled into a heated reactor. CNMs, including carbon nanotubes, were catalytically synthesized therein on stainless steel meshes. This work revealed that the structure of the resulting CNMs is determined by the feedstock type, through the disparate mixtures of carbon-bearing gases generated when different feedstocks are pyrolyzed. CNM characterization was conducted by scanning and transmission electron microscopy as well as by Raman spectroscopy and by thermogravimetric analysis. Gas chromatography was used to characterize the gases in the synthesis chamber. This work demonstrated an alternative method for efficient manufacturing of CNMs using both biodegradable and nonbiodegradable agricultural and municipal carbonaceous wastes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to study the feasibility of using cellulose fibers obtained from an agricultural waste, hemp core (Cannabis Sativa L), through different new environmental friendly cooking processes for fiber-cement production. The physical and mechanical properties of the fiber reinforced concrete, which depend on the nature and morphology of the fibers, matrix properties and the interactions between them, must be kept between the limits required for its application. Therefore, the morphology of the fibers and how its use affects the flocculation, retention and drainage processes in the fiber-cement manufacture, and the mechanical and physical properties of the fiber-cement product have been studied. The use of pulp obtained by means of the hemp core cooking in ethanolamine at 60% concentration at 180 degrees C during 90 min resulted in the highest solids retention and the best mechanical properties among the studied hemp core pulps. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in Sao Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg(-1) dry soil), during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bromelain is an aqueous extract of pineapple that contains a complex mixture of proteases and non-protease components. These enzymes perform an important role in proteolytic modulation of the cellular matrix in numerous physiologic processes, including anti-inflammatory, anti-thrombotic and fibrinolytic functions. Due to the scale of global production of pineapple (Ananas comosus L.), and the high percentage of waste generated in their cultivation and processing, several studies have been conducted on the recovery of bromelain. The aim of this study was to purify bromelain from pineapple wastes using an easy-to-scale-up process of precipitation by ethanol. The results showed that bromelain was recovered by using ethanol at concentrations of 30% and 70%, in which a purification factor of 2.28 fold was achieved, and yielded more than 98% of the total enzymatic activity. This enzyme proved to be susceptible to denaturation after the lyophilization process. However, by using 10% (w/v) glucose as a cryoprotector, it was possible to preserve 90% of the original enzymatic activity. The efficiency of the purification process was confirmed by SDS-PAGE, and native-PAGE electrophoresis, fluorimetry, circular dichroism and FTIR analyzes, showing that this method could be used to obtain highly purified and structurally stable bromelain. (C) 2012 Elsevier B.V. All rights reserved.