963 resultados para Solid-fluid Potential
Resumo:
BACKGROUND: The nonsteroidal anti-inflammatory drug (NSAID), indomethacin (Indo), has a large number of divergent biological effects, the molecular mechanism(s) for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC) and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC) and cholesterol that mimics biomembranes. METHODOLOGY/PRINCIPAL FINDINGS: Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET) study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes. CONCLUSION/SIGNIFICANCE: Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.
Resumo:
BACKGROUND In past reports, researchers have seldom attached importance to achievements in transforming digital anatomy to radiological diagnosis. However, investigators have been able to illustrate communication relationships in the retroperitoneal space by drawing potential routes in computerized tomography (CT) images or a virtual anatomical atlas. We established a new imaging anatomy research method for comparisons of the communication relationships of the retroperitoneal space in combination with the Visible Human Project and CT images. Specifically, the anatomic pathways of peripancreatic fluid extension to the mediastinum that may potentially transform into fistulas were studied. METHODS We explored potential pathways to the mediastinum based on American and Chinese Visible Human Project datasets. These drainage pathways to the mediastinum were confirmed or corrected in CT images of 51 patients with recurrent acute pancreatitis in 2011. We also investigated whether additional routes to the mediastinum were displayed in CT images that were not in Visible Human Project images. PRINCIPAL FINDINGS All hypothesized routes to the mediastinum displayed in Visible Human Project images, except for routes from the retromesenteric plane to the bilateral retrorenal plane across the bilateral fascial trifurcation and further to the retrocrural space via the aortic hiatus, were confirmed in CT images. In addition, route 13 via the narrow space between the left costal and crural diaphragm into the retrocrural space was demonstrated for the first time in CT images. CONCLUSION This type of exploration model related to imaging anatomy may be used to support research on the communication relationships of abdominal spaces, mediastinal spaces, cervical fascial spaces and other areas of the body.
Resumo:
Contaminant metals bound to sediments are subject to considerable solubilization during passage of the sediments through the digestive systems of deposit feeders. We examined the kinetics of this process, using digestive fluids extracted from deposit feeders Arenicola marina and Parastichopus californicus and then incubated with contaminated sediments. Kinetics are complex, with solubilization followed occasionally by readsorption onto the sediment. In general, solubilization kinetics are biphasic, with an initial rapid step followed by a slower reaction. For many sediment-organism combinations, the reaction will not reach a steady state or equilibrium within the gut retention time (GRT) of the organisms, suggesting that metal bioavailability in sediments is a time-dependent parameter. Experiments with commercial protein solutions mimic the kinetic patterns observed with digestive fluids, which corroborates our previous study that complexation by dissolved amino acids (AA) in digestive fluids leads to metal solubilization (Chen & Mayer 1998b; Environ Sci Technol 32:770-778). The relative importance of the fast and slow reactions appears to depend on the ratio of ligands in gut fluids to the amount of bound metal in sediments. High ligand to solid metal ratios result in more metals released in fast reactions and thus higher lability of sedimentary metals. Multiple extractions of a sediment with digestive fluid of A. marina confirm the potential importance of incomplete reactions within a single deposit-feeding event, and make clear that bioavailability to a single animal is Likely different from that to a community of organisms. The complex kinetic patterns lead to the counterintuitive prediction that toxification of digestive enzymes by solubilized metals will occur more readily in species that dissolve less metals.
Resumo:
1. Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest that CYP2D6 may have a function in the central nervous system. 2. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type (WT) C57BL/6 mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including the CYP2D6 gene and 5'- and 3'-flanking sequences. 3. Human CYP2D6 was expressed not only in the liver but also in the brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice, either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of L-carnitine, acetyl-L-carnitine, pantothenic acid, 2'-deoxycytidine diphosphate (dCDP), anandamide, N-acetylglucosaminylamine and a down-regulation of stearoyl-L-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. 4. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function.
Resumo:
Many end-stage heart failure patients are not eligible to undergo heart transplantation due to organ shortage, and even those under consideration for transplantation might suffer long waiting periods. A better understanding of the hemodynamic impact of left ventricular assist devices (LVAD) on the cardiovascular system is therefore of great interest. Computational fluid dynamics (CFD) simulations give the opportunity to study the hemodynamics in this patient population using clinical imaging data such as computed tomographic angiography. This article reviews a recent study series involving patients with pulsatile and constant-flow LVAD devices in which CFD simulations were used to qualitatively and quantitatively assess blood flow dynamics in the thoracic aorta, demonstrating its potential to enhance the information available from medical imaging.
Resumo:
Our previous gene expression analysis identified phospholipase A2 group IIA (PLA2G2A) as a potential biomarker of ovarian endometriosis. The aim of this study was to evaluate PLA2G2A mRNA and protein levels in tissue samples (endometriomas and normal endometrium) and in serum and peritoneal fluid of ovarian endometriosis patients and control women. One-hundred and sixteen women were included in this study: the case group included 70 ovarian endometriosis patients, and the control group included 38 healthy women and 8 patients with benign ovarian cysts. We observed 41.6-fold greater PLA2G2A mRNA levels in endometrioma tissue, compared to normal endometrium tissue. Using Western blotting, PLA2G2A was detected in all samples of endometriomas, but not in normal endometrium, and immunohistochemistry showed PLA2G2A-specific staining in epithelial cells of endometrioma paraffin sections. However, there were no significant differences in PLA2G2A levels between cases and controls according to ELISA of peritoneal fluid (6.0 ± 4.4 ng/ml, 6.6 ± 4.3 ng/ml; p = 0.5240) and serum (2.9 ± 2.1 ng/ml, 3.1 ± 2.2 ng/ml; p = 0.7989). Our data indicate that PLA2G2A is implicated in the pathophysiology of ovarian endometriosis, but that it cannot be used as a diagnostic biomarker.
Resumo:
Subseafloor environments preserved in Archean greenstone belts provide an analogue for investigating potential subsurface habitats on Mars. The c. 3.5-3.4 Ga pillow lava metabasalts of the mid-Archean Barberton greenstone belt, South Africa, have been argued to contain the earliest evidence for microbial subseafloor life. This includes candidate trace fossils in the form of titanite microtextures, and sulfur isotopic signatures of pyrite preserved in metabasaltic glass of the c. 3.472 Ga Hooggenoeg Formation. It has been contended that similar microtextures in altered martian basalts may represent potential extraterrestrial biosignatures of microbe-fluid-rock interaction. But despite numerous studies describing these putative early traces of life, a detailed metamorphic characterization of the microtextures and their host alteration conditions in the ancient pillow lava metabasites is lacking. Here, we present a new nondestructive technique with which to study the in situ metamorphic alteration conditions associated with potential biosignatures in mafic-ultramafic rocks of the Hooggenoeg Formation. Our approach combines quantitative microscale compositional mapping by electron microprobe with inverse thermodynamic modeling to derive low-temperature chlorite crystallization conditions. We found that the titanite microtextures formed under subgreenschist to greenschist facies conditions. Two chlorite temperature groups were identified in the maps surrounding the titanite microtextures and record peak metamorphic conditions at 315 ± 40°C (XFe3+(chlorite) = 25-34%) and lower-temperature chlorite veins/microdomains at T = 210 ± 40°C (lower XFe3+(chlorite) = 40-45%). These results provide the first metamorphic constraints in textural context on the Barberton titanite microtextures and thereby improve our understanding of the local preservation conditions of these potential biosignatures. We suggest that this approach may prove to be an important tool in future studies to assess the biogenicity of these earliest candidate traces of life on Earth. Furthermore, we propose that this mapping approach could also be used to investigate altered mafic-ultramafic extraterrestrial samples containing candidate biosignatures.
Resumo:
Double cyclization of short linear peptides obtained by solid phase peptide synthesis was used to prepare bridged bicyclic peptides (BBPs) corresponding to the topology of bridged bicyclic alkanes such as norbornane. Diastereomeric norbornapeptides were investigated by 1H-NMR, X-ray crystallography and CD spectroscopy and found to represent rigid globular scaffolds stabilized by intramolecular backbone hydrogen bonds with scaffold geometries determined by the chirality of amino acid residues and sharing structural features of β-turns and α-helices. Proteome profiling by capture compound mass spectrometry (CCMS) led to the discovery of the norbornapeptide 27c binding selectively to calmodulin as an example of a BBP protein binder. This and other BBPs showed high stability towards proteolytic degradation in serum.
Resumo:
The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BMMSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJMSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.
Resumo:
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.
Resumo:
Endometriosis is a gynecologic disease that is characterized by nonspecific symptoms and invasive diagnostics. To date, there is no adequate noninvasive method for the diagnosis of endometriosis. Although more than 100 potential biomarkers have been investigated in blood and/or peritoneal fluid, none of these has proven useful in clinical practice. The aim to find a suitable panel of biomarkers that would allow noninvasive diagnosis thus remains of interest. We evaluated the concentrations of 16 cytokines and other secretory proteins in serum and peritoneal fluid of 58 women with ovarian endometriosis (cases) and 40 healthy women undergoing sterilization or patients with benign ovarian cysts (controls) using multiplexed double fluorescence-based immunometric assay platform and enzyme-linked immunosorbent assay. Significantly higher concentrations of glycodelin-A were shown in serum, and significantly higher levels of glycodelin-A, IL-6, and IL-8, and lower levels of leptin were measured in the peritoneal fluid of cases versus controls. In serum, the best performance was shown by models that included the ratio of leptin/glycodelin-A and the ratio of ficolin 2/glycodelin-A, whereas in the peritoneal fluid the best models included the ratio of biglycan/leptin, regulated on activation normal T-cell expressed and secreted/IL-6 and ficolin-2/glycodelin-A, and IL-8 per milligram of total protein, all in combination with age. The models using serum and peritoneal fluid distinguished between ovarian endometriosis patients and controls regardless of the menstrual cycle phase with relatively high sensitivity (72.5% to 84.2%), specificity (78.4% to 91.2%), and area under the curve (0.85 to 0.90).
Resumo:
Despite several improvements in the surgical field and in the systemic treatment, ovarian cancer (OC) is still characterized by high recurrence rates and consequently poor survival. In OC, there is still a great lack of knowledge with regard to cancer behavior and mechanisms of recurrence, progression, and drug resistance. The OC metastatization process mostly occurs via intracoelomatic spread. Recent evidences show that tumor cells generate a favorable microenvironment consisting in T regulatory cells, T infiltrating lymphocytes, and cytokines which are able to establish an "immuno-tolerance mileau" in which a tumor cell can become a resistant clone. When the disease responds to treatment, immunoediting processes and cancer progression have been stopped. A similar inhibition of the immunosuppressive microenvironment has been observed after optimal cytoreductive surgery as well. In this scenario, the early identification of circulating tumor cells could represent a precocious signal of loss of the immune balance that precedes cancer immunoediting and relapse. Supporting this hypothesis, circulating tumor cells have been demonstrated to be a prognostic factor in several solid tumors such as colorectal, pancreatic, gastric, breast, and genitourinary cancer. In OC, the role of circulating tumor cells is still to be defined. However, as opposed to healthy women, circulating tumor cells have been demonstrated in peripheral blood of OC patients, opening a new research field in OC diagnosis, treatment monitoring, and follow-up.
Resumo:
BACKGROUND The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelium has been recognized as a potential entry site of immune cells into the central nervous system during immunosurveillance and neuroinflammation. The location of the choroid plexus impedes in vivo analysis of immune cell trafficking across the BCSFB. Thus, research on cellular and molecular mechanisms of immune cell migration across the BCSFB is largely limited to in vitro models. In addition to forming contact-inhibited epithelial monolayers that express adhesion molecules, the optimal in vitro model must establish a tight permeability barrier as this influences immune cell diapedesis. METHODS We compared cell line models of the mouse BCSFB derived from the Immortomouse(®) and the ECPC4 line to primary mouse choroid plexus epithelial cell (pmCPEC) cultures for their ability to establish differentiated and tight in vitro models of the BCSFB. RESULTS We found that inducible cell line models established from the Immortomouse(®) or the ECPC4 tumor cell line did not express characteristic epithelial proteins such as cytokeratin and E-cadherin and failed to reproducibly establish contact-inhibited epithelial monolayers that formed a tight permeability barrier. In contrast, cultures of highly-purified pmCPECs expressed cytokeratin and displayed mature BCSFB characteristic junctional complexes as visualized by the junctional localization of E-cadherin, β-catenin and claudins-1, -2, -3 and -11. pmCPECs formed a tight barrier with low permeability and high electrical resistance. When grown in inverted filter cultures, pmCPECs were suitable to study T cell migration from the basolateral to the apical side of the BCSFB, thus correctly modelling in vivo migration of immune cells from the blood to the CSF. CONCLUSIONS Our study excludes inducible and tumor cell line mouse models as suitable to study immune functions of the BCSFB in vitro. Rather, we introduce here an in vitro inverted filter model of the primary mouse BCSFB suited to study the cellular and molecular mechanisms mediating immune cell migration across the BCSFB during immunosurveillance and neuroinflammation.
Resumo:
The epidermal growth factor receptor (EGFR) and its ligands are overexpressed in many human tumors, including bladder and pancreas, correlating with a more aggressive tumor phenotype and poor patient prognosis. We initiated the present study to characterize the heterogeneity of gefitinib responsiveness in a panel of human bladder and pancreatic cancer cell lines in order to identify the biological characteristics of EGFR-dependent proliferation that could be used to prospectively identify drug-sensitive tumors. A second objective was to elucidate how to best exploit these results by utilizing gefitinib in combination therapy. To these ends, we examined the effects of the EGFR antagonist gefitinib on proliferation and apoptosis in a panel of 18 human bladder cancer cell lines and 9 human pancreatic cancer cell lines. Our data confirmed the existence of marked heterogeneity in Iressa responsiveness with less than half of the cell lines displaying significant growth inhibition by clinically relevant concentrations of the drug. Gefitinib responsiveness was found to be p27 kip1 dependent as DNA synthesis was restored following exposure to p27siRNA. Unfortunately, Iressa responsiveness was not closely linked to surface EGFR or TGF-α expression in the bladder cancer cells, however, cellular TGF-α expression correlated directly with Iressa sensitivity in the pancreatic cancer cell lines. These findings provide the potential for prospectively identifying patients with drug-sensitive tumors. ^ Further studies aimed at exploiting gefitinib-mediated cell cycle effects led us to investigate if gefitinib-mediated TRAIL sensitization correlated with increased p27kip1 accumulation. We observed that increased TRAIL sensitivity following gefitinib exposure was not dependent on p27 kip1 expression. Additional studies initiated to examine the role(s) of Akt and Erk signaling demonstrated that exposure to PI3K or MEK inhibitors significantly enhanced TRAIL-induced apoptosis at concentrations that block target phosphorylation. Furthermore, combinations of TRAIL and the PI3K or MEK inhibitors increased procaspase-8 processing above levels observed with TRAIL alone, indicating that the effects were exerted at the level of caspase-8 activation, considered the earliest step in the TRAIL pathway. ^
Resumo:
Background. Polyomavirus reactivation is common in solid-organ transplant recipients who are given immunosuppressive medications as standard treatment of care. Previous studies have shown that polyomavirus infection can lead to allograft failure in as many as 45% of the affected patients. Hypothesis. Ubiquitous polyomaviruses when reactivated by post-transplant immunosuppressive medications may lead to impaired renal function and possibly lower survival prospects. Study Overview. Secondary analysis of data was conducted on a prospective longitudinal study of subjects who were at least 18 years of age and were recipients of liver and/or kidney transplant at Mayo Clinic Scottsdale, Arizona. Methods. DNA extractions of blinded urine and blood specimens of transplant patients collected at Mayo Clinic during routine transplant patient visits were performed at Baylor College of Medicine using Qiagen kits. Virologic assays included testing DNA samples for specific polyomavirus sequences using QPCR technology. De-identified demographic and clinical patient data were merged with laboratory data and statistical analysis was performed using Stata10. Results. 76 patients enrolled in the study were followed for 3.9 years post transplantation. The prevalence of BK virus and JC virus urinary excretion was 30% and 28%. Significant association was observed between JC virus excretion and kidney as the transplanted organ (P = 0.039, Pearson Chi-square test). The median urinary JCV viral loads were two logs higher than those of BKV. Patients that excreted both BKV and JCV appeared to have the worst renal function with a mean creatinine clearance value of 71.6 millimeters per minute. A survival disadvantage was observed for dual shedders of BKV and JCV, log-rank statistics, p = 0.09; 2/5 dual-shedders expired during the study period. Liver transplant and male sex were determined to be potential risk factors for JC virus activation in renal and liver transplant recipients. All patients tested negative for SV40 and no association was observed between polyomavirus excretion and type of immunosuppressive medication (tacrolimus, mycophenolate mofetil, cyclosporine and sirolimus). Conclusions. Polyomavirus reactivation was common after solid-organ transplantation and may be associated with impaired renal function. Male sex and JCV infection may be potential risk factors for viral reactivation; findings should be confirmed in larger studies.^