542 resultados para Skeletonema costatum
Resumo:
The effect of pCO2 on carbon acquisition and intracellular assimilation was investigated in the three bloom-forming diatom species, Eucampia zodiacus (Ehrenberg), Skeletonema costatum (Greville) Cleve, Thalassionema nitzschioides (Grunow) Mereschkowsky and the non-bloom-forming Thalassiosira pseudonana (Hust.) Hasle and Heimdal. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3? uptake rates were measured by membrane-inlet mass spectrometry (MIMS) in cells acclimated to pCO2 levels of 370 and 800 ?atm. To investigate whether the cells operate a C4-like pathway, activities of ribulose-1,5-bisphosphate carboxylase (RubisCO) and phosphoenolpyruvate carboxylase (PEPC) were measured at the mentioned pCO2 levels and a lower pCO2 level of 50 ?atm. In the bloom-forming species, extracellular CA activities strongly increased with decreasing CO2 supply while constantly low activities were obtained for T. pseudonana. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution decreased with decreasing CO2 supply in the two bloom-forming species S. costatum and T. nitzschioides, but not in T. pseudonana and E. zodiacus. With the exception of S. costatum, maximum rates (Vmax) of photosynthesis remained constant in all investigated diatom species. Independent of the pCO2 level, PEPC activities were significantly lower than those for RubisCO, averaging generally less than 3%. All examined diatom species operate highly efficient CCMs under ambient and high pCO2, but differ strongly in the degree of regulation of individual components of the CCM such as Ci uptake kinetics and extracellular CA activities. The present data do not suggest C4 metabolism in the investigated species.
Resumo:
We examine the effects of seawater pCO2 concentration of 25, 41, and 76 kPa (250, 400, and 750 matm) on the growth rate of a natural assemblage of mixed phytoplankton obtained from a carefully controlled, 14-d mesocosm experiment. Throughout the experiment period, in all enclosures, two phytoplankton taxa (microflagellates and cryptomonads) and two diatom species (Skeletonema costatum and Nitzschia spp.) account for approximately 90% of the phytoplankton community. During the nutrient-replete period from day 9 to day 14 populations of Skeletonema costatum and Nitzschia spp. increased substantially; however, only Skeletonema costatum showed an increase in growth rate with increasing seawater pCO2. Not all diatom species in Korean coastal waters are sensitive to seawater pCO2 under nutrient-replete conditions.
Resumo:
Based on 66 surface sediment samples collected in the SW Atlantic Ocean between 27 and 50°S, this study presents an overview of the spatial distribution of biogenic opal and diatom concentrations, and diatom assemblages. Biogenic opal has highest values in the deepest, pelagic stations and decreases toward the slope. Diatoms closely follow the spatial trend of opal. Diatom assemblages reflect the present-day dominant hydrographical features. Antarctic diatoms are the main contributors to the preserved diatom community in core top sediments, with coastal planktonic and tropical/subtropical diatoms as secondary components. Dominance of Antarctic diatoms between 35 and 50°S in the pelagic realm mirrors the northward displacement of Antarctic-source water masses, characterized by high nutrient content and low salinity. Northward of ca. 35°S, the highest contribution of tropical/subtropical, pelagic diatoms, typical for nutrient-poor and high salinity waters, matches the main southward path of the Brazil Current. Mixing of Antarctic and tropical waters down up to 45°S is clearly illustrated by the diatom assemblage. Concentrations of biogenic opal and diatoms rather reflect the path of predominant water masses, but are less correlated with surface water productivity in the SW Atlantic.
Resumo:
During the Indian Ocean Expedition of R/V METEOR phytoplankton samples were taken with a multiple closing net (Multinet) at 103 stations. In this material the diatoms were investigated. In all 247 taxa could be identified which belong to 242 species and 5 varieties of formae of 80 genera. Of these 1 variety, 15 pecies, and 3 genera are newly described. New combinations were made for 18 species, and a number of old combinations was reinstated.
Resumo:
Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods.
Resumo:
Les travaux menés au LCPL depuis plusieurs année sur l'engraissement contrôlé de l'huître creuse Crassostrea gigas ont permis, à l'échelle expérimentale de définir les différents paramètres d'élevage: Température: 14°C ration alimentaire: 2.109 cell/ind/j de la diatomée Skeletonema costatum indice AFNOR initial sans incidence débit d'eau: 3 lIind/h eau de mer ou eau salée souterraine Dans ces conditions et après 30 jours d'engraissement, le poids total des huîtres a progressé de 10%, le poids sec de 230%, l'indice AFNOR de 80% et la concentration en glycogène de 450%. Le travail réalisé ici a pour but de transposer de l'échelle expérimentale à une échelle significative pour les professionnels, la technique d'engraissement contrôlé en utilisant l'eau salée souterraine pour la production de phytoplancton d'une part et comme vecteur de régulation thermique d'autre part. En effet, un des intérêts de l'utilisation de l'eau salée souterraine réside dans sa température constante de 14°C permettant un engraissement des huîtres en toute saison sans risque de déclenchement de la gamétogenèse. Afin de vérifier cette possibilité, l'étude a été réalisée au cours de deux saisons: printemps et automne. Pour l'eassai automnal, trois bassins de 8 m2 ont été utilisés, alimentés respectivement en eau de mer naturelle, eau de mer régulé en température par échange thermique avec de l'eau salée souterraine et eau salée souterraine traitée. Dans chaque bassin, 330 kg d'huîtres ont été disposées en 7 ruches de 4 clayettes. Pour l'essai printanier, seuls deux bassins ont été utilisés, alimentés en eau de mer thermorégulée à deux débits différents: 0.61/h et 3 lIh. L'étude a été conduite pour chaque saison sur une période de 35 jours. En automne 2000, l'indice de qualité de chair de 8.2 initialement, a atteint 12.5 en eau salée souterraine, 13.8 en eau de mer thermorégulée et 14.2 en eau de mer naturelle. Le poids de chair sèche passe de 0.9 g initialement à respectivement 2.32g, 2.39g et 2.37g. Les dosages de Pb, Cd, Hg, Mn et As ne montent pas d'évolution entre le début et la fin de l'élevage, par contre le Fe augmente sensiblement dans les huîtres sur eau salée souterraine traitée. En fin d'élevage, une période de stockage de 4 semaines des huîtres sans nourriture, n'a pas montré de perte de qualité. Au printemps 2001, un deuxième essai sera conduit pour vérifier les résultats obtenus à l'automne 2000, confirmer le choix du milieu d'élevage et proposer les éléments permettant d'approcher les coûts de production.
Resumo:
In questa tesi è stato studiato l’effetto dell’esposizione della diatomea Skeletonema marinoi, una specie molto comune nel Nord Adriatico e importante per il suo annuale contributo alla produzione primaria, agli erbicidi maggiormente utilizzati nella pianura Padana e riscontrati in acque dolci e salmastre di zone limitrofe al mare Adriatico. Gli erbicidi scelti consistono in terbutilazina e metolachlor, i più frequentemente riscontrati sia nelle acque superficiali che in quelle sotterranee dell’area Padana, noti per avere un effetto di inibizione su vie metaboliche dei vegetali; inoltre è stato valutato anche l’effetto di un prodotto di degradazione della terbutilazina, la desetilterbutilazina, presente anch’esso in concentrazioni pari al prodotto di origine e su cui non si avevano informazioni circa la tossicità sul fitoplancton. L’esposizione delle microalghe a questi erbicidi può avere effetti che si ripercuotono su tutto l’ecosistema: le specie fitoplanctoniche, in particolare le diatomee, sono i produttori primari più importanti dell’ecosistema: questi organismi rivestono un ruolo fondamentale nella fissazione del carbonio, rappresentando il primo anello della catena alimentari degli ambienti acquatici e contribuendo al rifornimento di ossigeno nell’atmosfera. L’effetto di diverse concentrazioni di ciascun composto è stato valutato seguendo l’andamento della crescita e dell’efficienza fotosintetica di S. marinoi. Per meglio determinare la sensibilità di questa specie agli erbicidi, l’effetto della terbutilazina è stato valutato anche al variare della temperatura (15, 20 e 25°C). Infine, dal momento che gli organismi acquatici sono solitamente esposti a una miscela di composti, è stato valutato l’effetto sinergico di due erbicidi, entrambi somministrati a bassa concentrazione. Le colture di laboratorio esposte a concentrazioni crescenti di diversi erbicidi e, in un caso, anche a diverse temperature, indicano che l’erbicida al quale la microalga mostra maggiore sensibilità è la Terbutilazina. Infatti a parità di concentrazioni, la sensibilità della microalga alla Terbutilazina è risultata molto più alta rispetto al suo prodotto di degradazione, la Desetilterbutilazina e all’erbicida Metolachlor. Attraverso l’analisi di densità algale, di efficienza fotosintetica, di biovolume e di contenuto intracellulare di Carbonio e Clorofilla, è stato dimostrato l’effetto tossico dell’erbicida Terbutilazina che, agendo come inibitore del trasporto degli elettroni a livello del PS-II, manifesta la sua tossicità nell’inibizione della fotosintesi e di conseguenza sulla crescita e sulle proprietà biometriche delle microalghe. E’ stato visto come la temperatura sia un parametro ambientale fondamentale sulla crescita algale e anche sugli effetti tossici di Terbutilazina; la temperatura ideale per la crescita di S. marinoi è risultata essere 20°C. Crescendo a 15°C la microalga presenta un rallentamento nella crescita, una minore efficienza fotosintetica, variazione nei valori biometrici, mostrando al microscopio forme irregolari e di dimensioni inferiori rispetto alle microalghe cresciute alle temperature maggiori, ed infine incapacità di formare le tipiche congregazioni a catena. A 25° invece si sono rivelate difficoltà nell’acclimatazione: sembra che la microalga si debba abituare a questa alta temperatura ritardando così la divisione cellulare di qualche giorno rispetto agli esperimenti condotti a 15° e a 20°C. Gli effetti della terbutilazina sono stati maggiori per le alghe cresciute a 25°C che hanno mostrato un calo più evidente di efficienza fotosintetica effettiva e una diminuzione di carbonio e clorofilla all’aumentare delle concentrazioni di erbicida. Sono presenti in letteratura studi che attestano gli effetti tossici paragonabili dell’atrazina e del suo principale prodotto di degradazione, la deetilatrazina; nei nostri studi invece non sono stati evidenziati effetti tossici significativi del principale prodotto di degradazione della terbutilazina, la desetilterbutilazina. Si può ipotizzare quindi che la desetilterbutilazina perda la propria capacità di legarsi al sito di legame per il pastochinone (PQ) sulla proteina D1 all’interno del complesso del PSII, permettendo quindi il normale trasporto degli elettroni del PSII e la conseguente sintesi di NADPH e ATP e il ciclo di riduzione del carbonio. Il Metolachlor non evidenzia una tossicità severa come Terbutilazina nei confronti di S. marinoi, probabilmente a causa del suo diverso meccanismo d’azione. Infatti, a differenza degli enzimi triazinici, metolachlor agisce attraverso l’inibizione delle elongasi e del geranilgeranil pirofosfato ciclasi (GGPP). In letteratura sono riportati casi studio degli effetti inibitori di Metolachlor sulla sintesi degli acidi grassi e di conseguenza della divisione cellulare su specie fitoplanctoniche d’acqua dolce. Negli esperimenti da noi condotti sono stati evidenziati lievi effetti inibitori su S. marinoi che non sembrano aumentare all’aumentare della concentrazione dell’erbicida. E’ interessante notare come attraverso la valutazione della sola crescita non sia stato messo in evidenza alcun effetto mentre, tramite l’analisi dell’efficienza fotosintetica, si possa osservare che il metolachlor determina una inibizione della fotosintesi.
Resumo:
Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24 °C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem.
Resumo:
Microalgae are of increasing interest due to their occurrence in the environment as harmful algal blooms and as a source of biomass for the production of fine and bulk chemicals. A method for the low cost disruption of algal biomass for environmental remediation or bioprocessing is desirable. Naturally-occurring algal lytic agents from bacteria could provide a cost-effective and environmentally desirable solution. A screen for algal lytic agents against a range of marine microalgae has identified two strains of algicidal bacteria isolated from the coastal region of the Western English Channel. Both strains (designated EC-1 and EC-2) showed significant algicidal activity against Skeletonema sp. and were identified as members of Alteromonas sp. and Maribacter sp. respectively. Characterisation of the two bioactivities revealed that they are small extracellular metabolites displaying thermal and acid stability. Purification of the EC-1 activity to homogeneity and initial structural analysis has identified it as a putative peptide with a mass of 1266. amu.
Resumo:
Microalgae are of increasing interest due to their occurrence in the environment as harmful algal blooms and as a source of biomass for the production of fine and bulk chemicals. A method for the low cost disruption of algal biomass for environmental remediation or bioprocessing is desirable. Naturally-occurring algal lytic agents from bacteria could provide a cost-effective and environmentally desirable solution. A screen for algal lytic agents against a range of marine microalgae has identified two strains of algicidal bacteria isolated from the coastal region of the Western English Channel. Both strains (designated EC-1 and EC-2) showed significant algicidal activity against Skeletonema sp. and were identified as members of Alteromonas sp. and Maribacter sp. respectively. Characterisation of the two bioactivities revealed that they are small extracellular metabolites displaying thermal and acid stability. Purification of the EC-1 activity to homogeneity and initial structural analysis has identified it as a putative peptide with a mass of 1266. amu.
Resumo:
A novel technique was developed for the flocculation of marine microalgae commonly used in aquaculture. The process entailed an adjustment of pH of culture to between 10 and 10.6 using NaOH, followed by addition of a non-ionic polymer Magnafloc LT-25 to a final concentration of 0.5 mg L-1. The ensuing flocculate was harvested, and neutralised giving a final concentration factor of between 200- and 800-fold. This process was successfully applied to harvest cells of Chaetoceros calcitrans, C. muelleri, Thalassiosira pseudonana, Attheya septentrionalis, Nitzschia closterium, Skeletonema sp., Tetraselmis suecica and Rhodomonas salina, with efficiencies >=80%. The process was rapid, simple and inexpensive, and relatively cost neutral with increasing volume (cf. concentration by centrifugation). Harvested material was readily disaggregated to single cell suspensions by dilution in seawater and mild agitation. Microscopic examination of the cells showed them to be indistinguishable from corresponding non-flocculated cells. Chlorophyll analysis of concentrates prepared from cultures of Concentrates of T. pseudonana prepared using pH-induced flocculation gave better growth of juvenile Pacific oysters (Crassostrea gigas) than concentrates prepared by ferric flocculation, or centrifuged concentrates using a cream separator or laboratory centrifuge. In follow up experiments, concentrates prepared from 1000 L Chaetoceros muelleri cultures were effective as supplementary diets to improve the growth of juvenile C. gigas and the scallop Pecten fumatus reared under commercial conditions, though not as effective as the corresponding live algae. The experiments demonstrated a proof-of-concept for a commercial application of concentrates prepared by flocculation, especially for use at a remote nursery without on-site mass-algal culture facilities.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The recent changes in phytoplankton production and community composition within the Suisun Bay and Sacramento-San Joaquin Delta may be related to climate. Chlorophyll a concentration, decreased by 42% (spring-summer) and 29% (fall) between 1972 through 1976 and 1977 through 1981. The decrease in biomass was characterized by a shift in phytoplankton community dominance from Skeletonema spp., Cyclotella spp. and Coscinodiscus spp. to Melosira granulata. The possible influence of climate on phytoplankton abundance was suggested by multivariate statistical analyses that demonstrated an association between changes in phytoplankton community composition and abundance between 1975 and 1982 and the climate related variables wind velocity, precipitation, river flow and water temperature.
Resumo:
The monthly average temperatures at Puttalam Lagoon, Dutch Bay, Portugal Bay towards Kovilmunai and Portugal Bay towards Pallugaturai showed a distinct annual cycle. The peak was in April and values gradually fell till September. There was a further gradual fall in temperature from October to January. The highest temperatures in all four stations were in April. The highest salinities in all the stations were from May to October i.e., during the south-west monsoon. The salinities at Dutch Bay and Portugal Bay were high in March and April corresponding to the highest temperatures reached during these months. Two maxima have been observed in phytoplankton production. A primary maximum in May-June and a secondary maximum in October. The primary and secondary maxima are due to the influx of nutrient laden waters from the rivers Kal Aru and Pomparippu Aru. The phytoplankton producing blooms were Rhizosolenia alata. Rhizosolenia imbricata, Chaetoceros lascinosus, Chaetoceros pervianus, Ch,aetoceros diversus, Coscinodiscus gigas, Thallasionema nitzschioides, Thalassiosira subtilis, Thallassiothrix frauenfeldii, Asterionella japonica, Sceletonema costatum, Bacteriastrum varians and Biddulphia sinensis. Sudden outbursts of a single species were common. These diatoms were species of Chaetoceros and Rhizosolenia, and Thallassiothrix frauenfeldii. Wide fluctuations have been observed in the distribution of phytoplankton but no definite conclusions can be drawn as the period of observation was only one year.
Resumo:
Uni-algal cultures of C. calcitrans, S. costatum, T. chui and Isochrysis sp. obtained from the laboratory were harvested. The harvest, preserved by either freezing or sun-drying, was fed to the larvae of P. monodon . Among the test algal species, Chaetoceros and Tetraselmis were used in larval feeding trials with frozen food while Chaetoceros, Tetraselmis and Isochrysis species were utilized in feeding experiments with sun-dried algae. Their relative effects on larval survival and development were assessed. Results showed that, except the alum-flocculated cells, both frozen Chaetoceros and Tetraselmis can support survival at the zoea stage. Best survival of 68% was atained with dried Chaetoceros followed by Tetraselmis at 44%. Dried Isochrysis did not perform as well, a significantly low survival of only 25% was obtained.