958 resultados para Simulator
Resumo:
Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
The development of an intelligent wheelchair (IW) platform that may be easily adapted to any commercial electric powered wheelchair and aid any person with special mobility needs is the main objective of this project. To be able to achieve this main objective, three distinct control methods were implemented in the IW: manual, shared and automatic. Several algorithms were developed for each of these control methods. This paper presents three of the most significant of those algorithms with emphasis on the shared control method. Experiments were performed by users suffering from cerebral palsy, using a realistic simulator, in order to validate the approach. The experiments revealed the importance of using shared (aided) controls for users with severe disabilities. The patients still felt having complete control over the wheelchair movement when using a shared control at a 50% level and thus this control type was very well accepted. Thus it may be used in intelligent wheelchairs since it is able to correct the direction in case of involuntary movements of the user but still gives him a sense of complete control over the IW movement.
Resumo:
This paper presents a new communication architecture to enable the remote control, monitoring and debug of embedded-system controllers designed using IOPT Petri nets. IOPT Petri nets and the related tools (http://gres.uninova.pt) have been used as a rapid prototyping and development framework, including model-checking, simulation and automatic code generation tools. The new architecture adds remote operation capabilities to the controllers produced by the automatic code generators, enabling quasi-real-time remote debugging and monitoring using the IOPT simulator tool. Furthermore, it enables the creation of graphical user interfaces for remote operation and the development of distributed systems where a Petri net model running on a central system supervises the actions of multiple remote subsystems. © 2015 IEEE.
Resumo:
This paper presents an optimization study of a distillation column for methanol and aqueous glycerol separation in a biodiesel production plant. Considering the available physical data of the column configuration, a steady state model was built for the column using Aspen-HYSYS as process simulator. Several sensitivity analysis were performed in order to better understand the relation between the variables of the distillation process. With the information obtained by the simulator, it is possible to define the best range for some operational variables that maintain composition of the desired product under specifications and choose operational conditions to minimize energy consumptions.
Resumo:
Mestrado em Engenharia Química – Ramo Optimização Energética na Indústria Química
Resumo:
Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química
Resumo:
O principal motivo para a realização deste trabalho consistiu no desenvolvimento de tecnologia robótica, que permitisse o mergulho e ascenção de grandes profundidades de uma forma eficiente. O trabalho realizado contemplou uma fase inicial de análise e estudo dos sistemas robóticos existentes no mercado, bem como métodos utilizados identificando vantagens e desvantagens em relação ao tipo de veículo pretendido. Seguiu-se uma fase de projeto e estudo mecânico, com o intuito de desenvolver um veículo com variação de lastro através do bombeamento de óleo para um reservatório exterior, para variar o volume total do veículo, variando assim a sua flutuabilidade. Para operar a grande profundidade com AUV’s é conveniente poder efetuar o trajeto up/down de forma eficiente e a variação de lastro apresenta vantagens nesse aspeto. No entanto, contrariamente aos gliders o interesse está na possibilidade de subir e descer na vertical. Para controlar a flutuabilidade e ao mesmo tempo analisar a profundidade do veículo em tempo real, foi necessario o uso de um sistema de processamento central que adquirisse a informação do sensor de pressão e comunicasse com o sistema de variação de lastro, de modo a fazer o controlo de posicionamento vertical desejado. Do ponto de vista tecnológico procurou-se desenvolver e avaliar soluções de variação de volume intermédias entre as dos gliders (poucas gramas) e as dos ROV’s workclass (dezenas ou centenas de kilogramas). Posteriormente, foi desenvolvido um simulador em matlab (Simulink) que reflete o comportamento da descida do veículo, permitindo alterar parâmetros do veículo e analisar os seus resultados práticos, de modo a poder ajustar o veículo real. Nos resultados simulados verificamos o cálculo das velocidades limite atingidas pelo veículo com diferentes coeficientes de atrito, bem como o comportamento da variação de lastro do veículo no seu deslocamento vertical. Sistema de Variação de Lastro para Controlo de Movimento Vertical de Veículo Subaquático Por fim, verificou-se ainda a capacidade de controlo do veículo para uma determinada profundiade, e foi feita a comparação entre estas simulações executadas com parâmetros muito próximos do ensaio real e os respetivos ensaios reais.
Resumo:
Os consumidores finais são vistos, no novo paradigma da operação das redes elétricas, como intervenientes ativos com capacidade para gerir os seus recursos energéticos, nomeadamente as cargas, as unidades de produção, os veículos elétricos e a participação em eventos de Demand Response. Tem sido evidente um aumento do consumo de energia, sendo que o setor residencial representa uma importante parte do consumo global dos países desenvolvidos. Para que a participação ativa dos consumidores seja possível, várias abordagens têm vindo a ser propostas, com ênfase nas Smart Grids e nas Microgrids. Diversos sistemas têm sido propostos e desenvolvidos com o intuito de tornar a operação dos sistemas elétricos mais flexível. Neste contexto, os sistemas de gestão de instalações domésticas apresentam-se como um elemento fulcral para a participação ativa dos consumidores na gestão energética, permitindo aos operadores de sistema coordenarem a produção mas também a procura. No entanto, é importante identificar as vantagens da implementação e uso de sistemas de gestão de energia elétrica para os consumidores finais. Nesta dissertação são propostas metodologias de apoio ao consumidor doméstico na gestão dos recursos energéticos existentes e a implementação das mesmas na plataforma de simulação de um sistema de gestão de energia desenvolvido para consumidores domésticos, o SCADA House Intelligent Management (SHIM). Para tal, foi desenvolvida uma interface que permite a simulação em laboratório do sistema de gestão desenvolvido. Adicionalmente, o SHIM foi incluído no simulador Multi-Agent Smart Grid Simulation Plataform (MASGriP) permitindo a simulação de cenários considerando diferentes agentes. Ao nível das metodologias desenvolvidas são propostos diferentes algoritmos de gestão dos recursos energéticos existentes numa habitação, considerando utilizadores com diferentes tipos de recursos (cargas; cargas e veículos elétricos; cargas, veículos elétricos e microgeração). Adicionalmente é proposto um método de gestão dinâmica das cargas para eventos de Demand Response de longa duração, considerando as características técnicas dos equipamentos. Nesta dissertação são apresentados cinco casos de estudos em que cada um deles tem diferentes cenários de simulação. Estes casos de estudos são importantes para verificar a viabilidade da implementação das metodologias propostas para o SHIM. Adicionalmente são apresentados na dissertação perfis reais dos vários recursos energéticos e de consumidores domésticos que são, posteriormente, utilizados para o desenvolvimento dos casos de estudo e aplicação das metodologias.
Resumo:
Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi- Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking Hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS’ strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
The power systems operation in the smart grid context increases significantly the complexity of their management. New approaches for ancillary services procurement are essential to ensure the operation of electric power systems with appropriate levels of stability, safety, quality, equity and competitiveness. These approaches should include market mechanisms which allow the participation of small and medium distributed energy resources players in a competitive market environment. In this paper, an energy and ancillary services joint market model used by an aggregator is proposed, considering bids of several types of distributed energy resources. In order to improve economic efficiency in the market, ancillary services cascading market mechanism is also considered in the model. The proposed model is included in MASCEM – a multi-agent system electricity market simulator. A case study considering a distribution network with high penetration of distributed energy resources is presented.
Resumo:
Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in very helpful sophisticated tools. This paper presents a new methodology for the management of coalitions in electricity markets. This approach is tested using the multi-agent market simulator MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), taking advantage of its ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market and internally, with their members in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. A case study using real data from the Iberian Electricity Market is performed to validate and illustrate the proposed approach.
Resumo:
This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.