969 resultados para Simulation experiments
Resumo:
One of the most important advantages of database systems is that the underlying mathematics is rich enough to specify very complex operations with a small number of statements in the database language. This research covers an aspect of biological informatics that is the marriage of information technology and biology, involving the study of real-world phenomena using virtual plants derived from L-systems simulation. L-systems were introduced by Aristid Lindenmayer as a mathematical model of multicellular organisms. Not much consideration has been given to the problem of persistent storage for these simulations. Current procedures for querying data generated by L-systems for scientific experiments, simulations and measurements are also inadequate. To address these problems the research in this paper presents a generic process for data-modeling tools (L-DBM) between L-systems and database systems. This paper shows how L-system productions can be generically and automatically represented in database schemas and how a database can be populated from the L-system strings. This paper further describes the idea of pre-computing recursive structures in the data into derived attributes using compiler generation. A method to allow a correspondence between biologists' terms and compiler-generated terms in a biologist computing environment is supplied. Once the L-DBM gets any specific L-systems productions and its declarations, it can generate the specific schema for both simple correspondence terminology and also complex recursive structure data attributes and relationships.
Resumo:
Predictions of flow patterns in a 600-mm scale model SAG mill made using four classes of discrete element method (DEM) models are compared to experimental photographs. The accuracy of the various models is assessed using quantitative data on shoulder, toe and vortex center positions taken from ensembles of both experimental and simulation results. These detailed comparisons reveal the strengths and weaknesses of the various models for simulating mills and allow the effect of different modelling assumptions to be quantitatively evaluated. In particular, very close agreement is demonstrated between the full 3D model (including the end wall effects) and the experiments. It is also demonstrated that the traditional two-dimensional circular particle DEM model under-predicts the shoulder, toe and vortex center positions and the power draw by around 10 degrees. The effect of particle shape and the dimensionality of the model are also assessed, with particle shape predominantly affecting the shoulder position while the dimensionality of the model affects mainly the toe position. Crown Copyright (C) 2003 Published by Elsevier Science B.V. All rights reserved.
Stability and simulation-based design of steel scaffolding without using the effective length method
Resumo:
For dynamic simulations to be credible, verification of the computer code must be an integral part of the modelling process. This two-part paper describes a novel approach to verification through program testing and debugging. In Part 1, a methodology is presented for detecting and isolating coding errors using back-to-back testing. Residuals are generated by comparing the output of two independent implementations, in response to identical inputs. The key feature of the methodology is that a specially modified observer is created using one of the implementations, so as to impose an error-dependent structure on these residuals. Each error can be associated with a fixed and known subspace, permitting errors to be isolated to specific equations in the code. It is shown that the geometric properties extend to multiple errors in either one of the two implementations. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
In Part 1 of this paper a methodology for back-to-back testing of simulation software was described. Residuals with error-dependent geometric properties were generated. A set of potential coding errors was enumerated, along with a corresponding set of feature matrices, which describe the geometric properties imposed on the residuals by each of the errors. In this part of the paper, an algorithm is developed to isolate the coding errors present by analysing the residuals. A set of errors is isolated when the subspace spanned by their combined feature matrices corresponds to that of the residuals. Individual feature matrices are compared to the residuals and classified as 'definite', 'possible' or 'impossible'. The status of 'possible' errors is resolved using a dynamic subset testing algorithm. To demonstrate and validate the testing methodology presented in Part 1 and the isolation algorithm presented in Part 2, a case study is presented using a model for biological wastewater treatment. Both single and simultaneous errors that are deliberately introduced into the simulation code are correctly detected and isolated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
[1] Comprehensive measurements are presented of the piezometric head in an unconfined aquifer during steady, simple harmonic oscillations driven by a hydrostatic clear water reservoir through a vertical interface. The results are analyzed and used to test existing hydrostatic and nonhydrostatic, small-amplitude theories along with capillary fringe effects. As expected, the amplitude of the water table wave decays exponentially. However, the decay rates and phase lags indicate the influence of both vertical flow and capillary effects. The capillary effects are reconciled with observations of water table oscillations in a sand column with the same sand. The effects of vertical flows and the corresponding nonhydrostatic pressure are reasonably well described by small-amplitude theory for water table waves in finite depth aquifers. That includes the oscillation amplitudes being greater at the bottom than at the top and the phase lead of the bottom compared with the top. The main problems with respect to interpreting the measurements through existing theory relate to the complicated boundary condition at the interface between the driving head reservoir and the aquifer. That is, the small-amplitude, finite depth expansion solution, which matches a hydrostatic boundary condition between the bottom and the mean driving head level, is unrealistic with respect to the pressure variation above this level. Hence it cannot describe the finer details of the multiple mode behavior close to the driving head boundary. The mean water table height initially increases with distance from the forcing boundary but then decreases again, and its asymptotic value is considerably smaller than that previously predicted for finite depth aquifers without capillary effects. Just as the mean water table over-height is smaller than predicted by capillarity-free shallow aquifer models, so is the amplitude of the second harmonic. In fact, there is no indication of extra second harmonics ( in addition to that contained in the driving head) being generated at the interface or in the interior.
Resumo:
Drying kinetics of low molecular weight sugars such as fructose, glucose, sucrose and organic acid such as citric acid and high molecular weight carbohydrate such as maltodextrin (DE 6) were determined experimentally using single drop drying experiments as well as predicted numerically by solving the mass and heat transfer equations. The predicted moisture and temperature histories agreed with the experimental ones within 6% average relative (absolute) error and average difference of +/- 1degreesC, respectively. The stickiness histories of these drops were determined experimentally and predicted numerically based on the glass transition temperature (T-g) of surface layer. The model predicted the experimental observations with good accuracy. A nonsticky regime for these materials during spray drying is proposed by simulating a drop, initially 120 mum in diameter, in a spray drying environment.
Resumo:
In a 2-yr multiple-site field study conducted in western Nebraska during 1999 and 2000, optimum dryland corn (Zea mays L.) population varied from less than 1.7 to more than 5.6 plants m(-2), depending largely on available water resources. The objective of this study was to use a modeling approach to investigate corn population recommendations for a wide range of seasonal variation. A corn growth simulation model (APSIM-maize) was coupled to long-term sequences of historical climatic data from western Nebraska to provide probabilistic estimates of dryland yield for a range of corn populations. Simulated populations ranged from 2 to 5 plants m(-2). Simulations began with one of three levels of available soil water at planting, either 80, 160, or 240 mm in the surface 1.5 m of a loam soil. Gross margins were maximized at 3 plants m(-2) when starting available water was 160 or 240 mm, and the expected probability of a financial loss at this population was reduced from about 10% at 160 mm to 0% at 240 mm. When starting available water was 80 mm, average gross margins were less than $15 ha(-1), and risk of financial loss exceeded 40%. Median yields were greatest when starting available soil water was 240 mm. However, perhaps the greater benefit of additional soil water at planting was reduction in the risk of making a financial loss. Dryland corn growers in western Nebraska are advised to use a population of 3 plants m(-2) as a base recommendation.
Resumo:
An approach based on a linear rate of increase in harvest index (141) with time after anthesis has been used as a simple means-to predict grain growth and yield in many crop simulation models. When applied to diverse situations, however, this approach has been found to introduce significant error in grain yield predictions. Accordingly, this study was undertaken to examine the stability of the HI approach for yield prediction in sorghum [Sorghum bicolor (L.) Moench]. Four field experiments were conducted under nonlimiting water. and N conditions. The experiments were sown at times that ensured a broad range in temperature and radiation conditions. Treatments consisted of two population densities and three genotypes varying in maturity. Frequent sequential harvests were used to monitor crop growth, yield, and the dynamics of 111. Experiments varied greatly in yield and final HI. There was also a tendency for lower HI with later maturity. Harvest index dynamics also varied among experiments and, to a lesser extent, among treatments within experiments. The variation was associated mostly with the linear rate of increase in HI and timing of cessation of that increase. The average rate of HI increase was 0.0198 d(-1), but this was reduced considerably (0.0147) in one experiment that matured in cool conditions. The variations found in IN dynamics could be largely explained by differences in assimilation during grain filling and remobilization of preanthesis assimilate. We concluded that this level of variation in HI dynamics limited the general applicability of the HI approach in yield prediction and suggested a potential alternative for testing.
Resumo:
In recent years, progress has been made in modelling long chain branched polymers by the introduction of the so-called pompom model. Initially developed by McLeish and Larson (1998), the model has undergone several improvements or alterations, leading to the development of new formulations. Some of these formulations however suffer from certain mathematical defects. The purpose of the present paper is to review some of the formulations of the pom-pom constitutive model, and to investigate their possible mathematical defects. Next, an alternative formulation is proposed, which does not appear to exhibit mathematical defects, and we explore its modelling performance by comparing the predictions with experiments in non-trivial rheometric flows of an LDPE melt. The selected rheometric flows are the double step strain, as well as the large amplitude oscillatory shear experiments. For LAOS experiments, the comparison involves the use of Fourier-transform analysis.
Resumo:
Results of experiments recently performed are reported, in which two optical parametric amplifiers were set up to generate two independently quadrature squeezed continuous wave laser beams. The transformation of quadrature squeezed states into polarization squeezed states and into states with spatial quantum correlations is demonstrated. By utilizing two squeezed laser beams, a polarization squeezed state exhibiting three simultaneously squeezed Stokes operator variances was generated. Continuous variable polarization entanglement was generated and the Einstein-Podolsky-Rosen paradox was observed. A pair of Stokes operators satisfied both the inseparability criterion and the conditional variance criterion. Values of 0.49 and 0.77, respectively, were observed, with entanglement requiring values below unity. The inseparability measure of the observed quadrature entanglement was 0.44. This value is sufficient for a demonstration of quantum teleportation, which is the next experimental goal of the authors.
Resumo:
Understanding the mechanism of liquid-phase evaporation in a three-phase fixed-bed reactor is of practical importance, because the reaction heat is usually 7-10 times the vaporization heat of the liquid components. Evaporation, especially the liquid dryout, can largely influence the reactor performance and even safety. To predict the vanishing condition of the liquid phase, Raoult's law was applied as a preliminary approach, with the liquid vanishing temperature defined based on a liquid flow rate of zero. While providing correct trends, Raoult's law exhibits some limitation in explaining the temperature profile in the reactor. To comprehensively understand the whole process of liquid evaporation, a set of experiments on inlet temperature, catalyst activity, liquid flow rate, gas flow rate, and operation pressure were carried out. A liquid-region length-predicting equation is suggested based on these experiments and the principle of heat balance.
Resumo:
Experimental scratch resistance testing provides two numbers: the penetration depth Rp and the healing depth Rh. In molecular dynamics computer simulations, we create a material consisting of N statistical chain segments by polymerization; a reinforcing phase can be included. Then we simulate the movement of an indenter and response of the segments during X time steps. Each segment at each time step has three Cartesian coordinates of position and three of momentum. We describe methods of visualization of results based on a record of 6NX coordinates. We obtain a continuous dependence on time t of positions of each of the segments on the path of the indenter. Scratch resistance at a given location can be connected to spatial structures of individual polymeric chains.
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome