976 resultados para Signal-transduction Protein
Resumo:
Resistance to bacterial speck in tomato is governed by a gene-for-gene interaction in which a single resistance locus (Pto) in the plant responds to the expression of a specific avirulence gene (avrPto) in the pathogen. Disease susceptibility results if either Pto or avrPto are lacking from the corresponding organisms. Leaves of tomato cultivars that contain the Pto locus also exhibit a hypersensitive-like response upon exposure to an organophosphorous insecticide, fenthion. Recently, the Pto gene was isolated by a map-based cloning approach and was shown to be a member of a clustered multigene family with similarity to various protein-serine/threonine kinases. Another member of this family, termed Fen, was found to confer sensitivity to fenthion. The Pto protein shares 80% identity (87% similarity) with Fen. Here, Pto and Fen are shown to be functional protein kinases that probably participate in the same signal transduction pathway.
Resumo:
Exposure of cells to H2O2 mimics many of the effects of treatment of cells with extracellular ligands. Among these is the stimulation of tyrosine phosphorylation. In this study, we show that exposure of cells to H2O2 increases the catalytic activity of the lymphocyte-specific tyrosine protein kinase p56lck (Lck) and induces tyrosine phosphorylation of Lck at Tyr-394, the autophosphorylation site. Using mutant forms of Lck, we found that Tyr-394 is required for H2O2-induced activation of Lck, suggesting that phosphorylation of this site may activate Lck. In addition, H2O2 treatment induced phosphorylation at Tyr-394 in a catalytically inactive mutant of Lck in cells that do not express endogenous Lck. This demonstrates that a kinase other than Lck itself is capable of phosphorylating Lck at the so-called autophosphorylation site and raises the possibility that this as yet unidentified tyrosine protein kinase functions as an activator of Lck. Such an activating enzyme could play an important role in signal transduction in T cells.
Resumo:
Protein phosphatase 1 (PP1) is a highly conserved enzyme that has been implicated in diverse biological processes in the brain as well as in nonneuronal tissues. The present study used light and electron microscopic immunocytochemistry to characterize the distribution of two PP1 isoforms, PP1 alpha and PP1 gamma 1, in the rat neostriatum. Both isoforms are heterogeneously distributed in brain with the highest immunoreactivity being found in the neostriatum and hippocampal formation. Further, both isoforms are highly and specifically concentrated in dendritic spines. Weak immunoreactivity is present in dendrites, axons, and some axon terminals. Immunoreactivity for PP1 alpha is also present in the perikaryal cytoplasm and nuclei of most medium- and large-sized neostriatal neurons. The specific localization of PP1 in dendritic spines is consistent with a central role for this enzyme in signal transduction. The data support the concept that, in the course of evolution, spines developed as specialized signal transduction organelles enabling neurons to integrate diverse inputs from multiple afferent nerve terminals.
Resumo:
Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways.
Resumo:
BACKGROUND Nociceptin in the peripheral circulation has been proposed to have an immunoregulatory role with regards to inflammation and pain. However, the mechanisms involved in its regulation are still not clear. The aim of this study was to investigate signalling pathways contributing to the regulation of the expression of nociceptin under inflammatory conditions. METHODS Mono Mac 6 cells (MM6) were cultured with or without phorbol-12-myristate-13-acetate (PMA). Prepronociceptin (ppNOC) mRNA was detected by RT-qPCR and extracellular nociceptin by fluorescent-enzyme immunoassay. Intracellular nociceptin and phosphorylated kinases were measured using flow cytometry. To evaluate the contribution of various signalling pathways to the regulation of ppNOC mRNA and nociceptin protein, cells were pre-treated with specific kinase inhibitors before co-culturing with PMA. RESULTS ppNOC mRNA was expressed in untreated MM6 at low concentrations. Exposure of cells to PMA upregulated ppNOC after nine h compared with controls without PMA (median normalized ratio with IQR: 0.18 (0.15-0.26) vs. 0 (0-0.02), P<0.01). Inhibition of mitogen-activated protein kinases specific for signal transduction reversed the PMA effects (all P<0.001). Induction of nociceptin protein concentrations in PMA stimulated MM6 was prevented predominantly by identity of ERK inhibitor (P<0.05). CONCLUSIONS Upregulation of nociceptin expression by PMA in MM6 cells involves several pathways. Underlying mechanisms involved in nociceptin expression may lead to new insights in the treatment of pain and inflammatory diseases.
Resumo:
Flow cytometry, in combination with advances in bead coding technologies, is maturing as a powerful high-throughput approach for analyzing molecular interactions. Applications of this technology include antibody assays and single nucleotide polymorphism mapping. This review describes the recent development of a microbead flow cytometric approach to analyze RNA-protein interactions and discusses emerging bead coding strategies that together will allow genome-wide identification of RNA-protein complexes. The microbead flow cytometric approach is flexible and provides new opportunities for functional genomic studies and small-molecule screening.
Resumo:
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serine/threonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Gene expression during early ascidian metamorphosis requires signaling by Hemps, an EGF-like protein
Resumo:
Hemps, a novel epidermal growth factor (EGF)-like protein, is expressed during larval development and early metamorphosis in the ascidian Herdmania curvata and plays a direct role in triggering metamorphosis. In order to identify downstream genes in the Hemps pathway we used a gene expression profiling approach, in which we compared post-larvae undergoing normal metamorphosis with larval metamorphosis blocked with an anti-Hemps antibody. Molecular profiling revealed that there are dynamic changes in gene expression within the first 30 minutes of normal metamorphosis with a significant portion of the genome (approximately 49%) being activated or repressed. A more detailed analysis of the expression of 15 of these differentially expressed genes through embryogenesis, larval development and metamorphosis revealed that while there is a diversity of temporal expression patterns, a number of genes are transiently expressed during larval development and metamorphosis. These and other differentially expressed genes were localised to a range of specific cell and tissue types in Herdmania larvae and post-larvae. The expression of approximately 24% of the genes that were differentially expressed during early metamorphosis was affected in larvae treated with the anti-Hemps antibody. Knockdown of Hemps activity affected the expression of a range of genes within 30 minutes of induction, suggesting that the Hemps pathway directly regulates early response genes at metamorphosis. In most cases, it appears that the Hemps pathway contributes to the modulation of gene expression, rather than initial gene activation or repression. A total of 151 genes that displayed the greatest alterations in expression in response to anti-Hemps antibody were sequenced. These genes were implicated in a range of developmental and physiological roles, including innate immunity, signal transduction and in the regulation of gene transcription. These results suggest that there is significant gene activity during the very early stages of H. curvata metamorphosis and that the Hemps pathway plays a key role in regulating the expression of many of these genes.
Resumo:
N4WBP5A (Ndfip2) belongs to an evolutionarily conserved group of Nedd4-interacting proteins with two homologues in mammalian species. We have previously shown that N4WBP5A expression in Xenopus oocytes results in increased cell-surface expression of the epithelial sodium channel. N4WBPs are characterized by one or two amino terminal PPxY motifs and three transmembrane domains. Here we show that both PPxY motifs of N4WBP5A mediate interaction with WW domains of Nedd4 and that N4WBP5A can physically interact with the WW domains of several Nedd4-family proteins. N4WBP5A is ubiquitinated and ubiquitination does not significantly affect the turnover of N4WBP5A protein. Ubiquitination of N4WBP5A is enhanced by Nedd4 and Nedd4-2 expression. N4WBP5A localizes to the Golgi, vesicles associated with the Golgi complex and to multivesicular bodies. We show that the ectopic expression of N4WBP5A inhibits receptor-mediated endocytosis of labelled epidermal growth factor. N4WBP5A overexpression inhibits accumulation of EGF in large endocytic/lysosomal vesicles suggestive of a role for N4WBP5A in protein trafficking. We propose that N4WBP5A acts as an adaptor to recruit Nedd4 family ubiquitin-protein ligases to the protein trafficking machinery.
Resumo:
Oxysterol binding protein (OSBP) and its homologs have been shown to regulate lipid metabolism and vesicular transport. However, the exact molecular function of individual OSBP homologs remains uncharacterized. Here we demonstrate that the yeast OSBP homolog, Osh6p, bound phosphatidic acid and phosphoinositides via its N-terminal half containing the conserved OSBP-related domain (ORD). Using a green fluorescent protein fusion chimera, Osh6p was found to localize to the cytosol and patch-like or punctate structures in the vicinity of the plasma membrane. Further examination by domain mapping demonstrated that the N-terminal half was associated with FM4-64 positive membrane compartments; however, the C-terminal half containing a putative coiled-coil was localized to the nucleoplasm. Functional analysis showed that the deletion of OSH6 led to a significant increase in total cellular ergosterols, whereas OSH6 overexpression caused both a significant decrease in ergosterol levels and resistance to nystatin. Oleate incorporation into sterol esters was affected in OSH6 overexpressing cells. However, Lucifer yellow internalization, and FM4-64 uptake and transport were unaffected in both OSH6 deletion and overexpressing cells. Furthermore, osh6 Delta exhibited no defect in carboxypeptidase Y transport and maturation. Lastly, we demonstrated that both the conserved ORD and the putative coiled-coil motif were indispensable for the in vivo function of Osh6p. These data suggest that Osh6p plays a role primarily in regulating cellular sterol metabolism, possibly stero transport.
Resumo:
The function of the prion protein gene (PRNP) and its normal product PrPC is elusive. We used comparative genomics as a strategy to understand the normal function of PRNP. As the reliability of comparisons increases with the number of species and increased evolutionary distance, we isolated and sequenced a 66.5 kb BAC containing the PRNP gene from a distantly related mammal, the model Australian marsupial Macropus eugenii (tammar wallaby). Marsupials are separated from eutherians such as human and mouse by roughly 180 million years of independent evolution. We found that tammar PRNP, like human PRNP, has two exons. Prion proteins encoded by the tammar wallaby and a distantly related marsupial, Monodelphis domestica (Brazilian opossum) PRNP contain proximal PrP repeats with a distinct, marsupial-specific composition and a variable number. Comparisons of tammar wallaby PRNP with PRNPs from human, mouse, bovine and ovine allowed us to identify non-coding gene regions conserved across the marsupial-eutherian evolutionary distance, which are candidates for regulatory regions. In the PRNP 3' UTR we found a conserved signal for nuclear-specific polyadenylation and the putative cytoplasmic polyadenylation element (CPE), indicating that post-transcriptional control of PRNP mRNA activity is important. Phylogenetic footprinting revealed conserved potential binding sites for the MZF-1 transcription factor in both upstream promoter and intron/intron 1, and for the MEF2, MyTI, Oct-1 and NFAT transcription factors in the intron(s). The presence of a conserved NFAT-binding site and CPE indicates involvement of PrPC in signal transduction and synaptic plasticity. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Human neuronal protein 22 (hNP22) is a novel neuron-specific protein featuring numerous motifs previously described in cytoskeleton-associating and signaling proteins. Because previous studies have supported abnormalities in neuronal cytoarchitecture and/or development in the schizophrenia brain, we examined the expression of hNP22 in the anterior cingulate cortex, the hippocampus and the prefrontal cortex of schizophrenic and normal control postmortem brains using high-sensitive immunohistochemistry. Seven schizophrenic and seven age- and sex-matched control brains were examined. The ratio of hNP22-immunopositive cells/total cells was significantly reduced in layer V (p = .020) and layer VI (p = .022) of the anterior cingulate cortex of schizophrenic brain compared with controls. In contrast, there were no significant changes observed in the hippocampus and the prefrontal cortex. These results suggest that altered expression of hNP22 may be associated with modifications in neuronal cytoarchitecture leading to dysregulation of neural signal transduction in the anterior cingulate cortex of the schizophrenia brain.
Resumo:
The orthologous proteins of the stress-activated protein kinase-interacting 1 (Sin1) family have been implicated in several different signal transduction pathways. In this study, we have investigated the function of the full-length human Sin1 protein and a C-terminally truncated isoform, Sin 1 alpha, which is produced by alternative splicing. Immunoblot analysis using an anti-Sin 1 polyclonal antibody showed that full-length Sin I and several smaller isoforms are widely expressed. Sin 1 was demonstrated to bind to c-Jun N-terminal kinase (JNK) in vitro and in vivo, while no interaction with p38- or ERK1/2-family MAPKs was observed. The Sin1 alpha isoform could also form a complex with JNK in vivo. Despite localizing in distinct compartments within the cell, both Sin1 and Sin1 alpha co-localized with JNK, suggesting that the Sin1 proteins could recruit JNK. Over-expression of full-length Sin1 inhibited the activation of JNK by UV-C in DG75 cells, as well as basal JNK-activity in HEK293 cells. These data suggest that the human Sin1 proteins may act as scaffold molecules in the regulation of signaling by JNK. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of peptide specificity of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.