979 resultados para Seasons.
Resumo:
Fourier Transform (FT)-near infra-red spectroscopy (NIRS) was investigated as a non-invasive technique for estimating percentage (%) dry matter of whole intact 'Hass' avocado fruit. Partial least squares (PLS) calibration models were developed from the diffuse reflectance spectra to predict % dry matter, taking into account effects of seasonal variation. It is found that seasonal variability has a significant effect on model predictive performance for dry matter in avocados. The robustness of the calibration model, which in general limits the application for the technique, was found to increase across years (seasons) when more seasonal variability was included in the calibration set. The R-v(2) and RMSEP for the single season prediction models predicting on an independent season ranged from 0.09 to 0.61 and 2.63 to 5.00, respectively, while for the two season models predicting on the third independent season, they ranged from 0.34 to 0.79 and 2.18 to 2.50, respectively. The bias for single season models predicting an independent season was as high as 4.429 but <= 1.417 for the two season combined models. The calibration model encompassing fruit from three consecutive years yielded predictive statistics of R-v(2) = 0.89, RMSEP = 1.43% dry matter with a bias of -0.021 in the range 16.1-39.7% dry matter for the validation population encompassing independent fruit from the three consecutive years. Relevant spectral information for all calibration models was obtained primarily from oil, carbohydrate and water absorbance bands clustered in the 890-980, 1005-1050, 1330-1380 and 1700-1790 nm regions. These results indicate the potential of FT-NIRS, in diffuse reflectance mode, to non-invasively predict the % dry matter of whole 'Hass' avocado fruit and the importance of the development of a calibration model that incorporates seasonal variation. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
Rhizoctonia solani is a soil inhabiting basidiomycetous fungus able to induce a wide range of symptoms in many plant species. This genetically complex species is divided to 13 anastomosis groups (AG), of which AG-3 is specialized to infect potato. However, also a few other AGs are able to infect or live in close contact with potato. On potato, R. solani infection causes two main types of diseases including stem canker observed as a dark brown lesions on developing stems and stolons, and black scurf that develops on new tubers close to the time of harvest. These disease symptoms are collectively called a ‘Rhizoctonia disease complex’. Between the growing seasons R. solani survives in soil and plant debri as sclerotia or as the sclerotia called black scurf on potato tubers which when used as seed offer the main route for dispersal of the fungus to new areas. The reasons for the dominance of AG-3 on potato seem to be attributable to its highly specialization to potato and its ability to infect and form sclerotia efficiently at low temperatures. In this study, a large nationwide survey of R. solani isolates was made in potato crops in Finland. Almost all characterized isolates belonged to AG-3. Additionally, three other AGs (AG-2-1, AG-4 and AG-5) were found associated with symptoms on potato plants but they were weaker pathogens on potato than AG-3 as less prone to form black scurf. According to phylogenetic analysis of the internal transcribed sequences (ITS) of the ribosomal RNA genes the Finnish AG-3 isolates are closely related to each other even though a wide variation of physiological features was observed between them. Detailed analysis of the ITS regions revealed single nucleotide polymorphism in 14 nucleotide positions of ITS-1 and ITS-2. Additionally, compensatory base changes on ITS-2 were detected which suggests that potato-infecting R. solani AG-3 could be considered as a separate species instead of an AG of R. solani. For the first time, molecular defence responses were studied and detected during the early phases of interaction between R. solani AG-3 and potato. Extensive systemic signalling for defence exploiting several known defence pathways was activated as soon as R. solani came into close contact with the base of a sprout. The defence response was strong enough to protect vulnerable sprout tips from new attacks by the pathogen. These results at least partly explain why potato emergence is eventually successful even under heavy infection pressure by R. solani.
Resumo:
Pseudocercospora macadamiae Beilharz, Mayers and Pascoe infects macadamia fruit via stomata causing husk spot disease. Information on the variability of fruit stomatal abundance, its association with diseased fruit pericarps (sticktights) that are retained in the tree canopy, and its influence on the husk spot intensity (incidence, severity and lesion number) among macadamia genotypes is lacking. We examined a total of 230 macadamia trees comprising 19 cultivars, 56 wild germplasm accessions and 40 breeding progeny, for the prevalence of sticktights and husk spot intensity over three production seasons. We observed a strong association between the prevalence of sticktights and disease intensity indicating its usefulness as a predictor of husk spot and as a useful phenotypic trait for husk spot resistance selection in breeding programmes. Similarly, stomatal abundance varied among macadamia genotypes, and a significant linear relationship (P < 0.001; 93%) was observed between fruit stomatal abundance and husk spot for all the macadamia genotypes analysed, confirming the utility of that trait for disease resistance screening. The genotypes were grouped into disease resistance groups. Correlations between fruit stomatal abundance, disease intensity and prevalence of sticktights revealed that the numbers of sticktights, and relative stomatal abundance were the main factors influencing the intensity of husk spot among macadamia genotypes. This is the first comprehensive study of natural variation of stomatal abundance in Macadamia species that reveals genetic variation, and provides relevant relationships with disease intensity and the prevalence of sticktights. The phenotypic plant traits indentified in this study may serve as selection tools for disease resistance screening in macadamia breeding programmes.
Resumo:
Mango is an important horticultural fruit crop and breeding is a key strategy to improve ongoing sustainability. Knowledge of breeding values of potential parents is important for maximising progress from breeding. This study successfully employed a mixed linear model methods incorporating a pedigree to predict breeding values for average fruit weight from highly unbalanced data for genotypes planted over three field trials and assessed over several harvest seasons. Average fruit weight was found to be under strong additive genetic control. There was high correlation between hybrids propagated as seedlings and hybrids propagated as scions grafted onto rootstocks. Estimates of additive genetic correlation among trials ranged from 0.69 to 0.88 with correlations among harvest seasons within trials greater than 0.96. These results suggest that progress from selection for broad adaptation can be achieved, particularly as no repeatable environmental factor that could be used to predict G x E could be identified. Predicted breeding values for 35 known cultivars are presented for use in ongoing breeding programs.
Resumo:
Grazing by domestic livestock is one of the most widespread uses of the rangelands of Australia. There is limited information on the effects of grazing by domestic livestock on the vertebrate fauna of Australia and the establishment of a long-term grazing experiment in north-eastern Queensland at Wambiana provided an opportunity to attempt an examination of the changes in vertebrate fauna as a consequence of the manipulation of stocking rates. The aim was to identify what the relative effects of vegetation type, stocking rate and other landscape-scale environmental factors were on the patterns recorded. Sixteen 1-ha sites were established within three replicated treatments (moderate, heavy and variable stocking rates). The sites were sampled in the wet and dry seasons in 1999-2000 (T-0) and again in 2003-04 (T-1). All paddocks of the treatments were burnt in 1999. Average annual rainfall declined markedly between the two sampling periods, which made interpretation of the data difficult. A total of 127 species of vertebrate fauna comprising five amphibian, 83 bird, 27 reptile and 12 mammal species were recorded. There was strong separation in faunal composition from T-0 to T-1 although changes in mean compositional dissimilarity between the grazing stocking rate treatments were less well defined. There was a relative change in abundance of 24 bird, four mammal and five reptile species from T-0 to T-1. The generalised linear modelling identified that, in the T-1 data, there was significant variation in the abundance of 16 species explained by the grazing and vegetation factors. This study demonstrated that vertebrate fauna assemblage did change and that these changes were attributable to the interplay between the stocking rates, the vegetation types on the sites surveyed, the burning of the experimental paddocks and the decrease in rainfall over the course of the two surveys. It is recommended that the experiment is sampled again but that the focus should be on a rapid survey of abundant taxa (i.e. birds and reptiles) to allow an increase in the frequency of sampling and replication of the data. This would help to articulate more clearly the trajectory of vertebrate change due to the relative effects of stocking rates compared with wider landscape environmental changes. Given the increasing focus on pastoral development in northern Australia, any opportunity to incorporate the collection of data on biodiversity into grazing manipulation experiments should be taken for the assessment of the effects of land management on faunal species.
Resumo:
Finland has moved from growing vegetables by natural light to year-round greenhouse production using artificial lighting. Determination of sensory effects on greenhouse-grown vegetables is important as sensory evaluation provides information which chemical methods can not. It can tell us about the quality of samples which affects the consumers' behaviour. There are different opinions on how the quality of vegetables should be determined. The consumers are dissatisfied with the quality of vegetables and fruits, although the variety of products is larger than ever. The aim of this study was to find out how artificial lighting contributes to the sensory quality of greenhouse tomatoes and cucumbers compared to traditional natural lighting, and how storage affects the sensory attributes of the samples. In this study there were two sets of tomatoes and two sets of cucumbers, representing two different harvest seasons. Sensory evaluation involved two steps. The first step was to sort the samples and the second step was to generate a profile using descriptive analysis. Sorting was found to give some approximate information on differences between tomato and cucumber samples. MDS-maps dimensions were presented by age and lighting technique. The reliability of sorting results was quite good. The quality of the natural products was inconsistent. Production technology had more of an effect on cucumber samples than tomato samples. Natural light cucumbers were, for example sweeter and softer than artificial light cucumbers. Age had an especially large effect on cucumber appearance characteristics. There were less differences between tomato samples than cucumber samples. Production technology had less of an effect on tomato samples than age, e.g. hardness decreased during storage. In this study, it was found that artificial lighting has little effect on the sensory quality of Finnish greenhouse tomatoes compared with tomatoes grown under natural light.
Resumo:
Wild dogs (Canis lupus dingo and hybrids) are routinely controlled to protect beef cattle from predation yet beef producers are sometimes ambivalent as to whether wild dogs are a significant problem or not. This paper reports the loss of calves between birth and weaning in pregnancy-tested herds located on two beef cattle properties in south-central and far north Queensland for up to 4 consecutive years. Comparisons of lactation failures (identified when dams that previously tested pregnant were found non-lactating at weaning) were made between adjoining test herds grazed in places with or without annual (or twice annual) wild dog poison baiting programs. No correlation between wild dog relative abundance and lactation failures was apparent. Calf loss was frequently higher (three in 7 site-years, 11–32%) in baited areas than in non-baited areas (9% in 1 of 7 site-years). Predation loss of calves (in either area) only occurred in seasons of below-average rainfall, but was not related to herd nutrition. These data suggest that controlling wild dogs to protect calves on extensive beef cattle enterprises is unnecessary in most years because wild dogs do not routinely prey on calves. In those seasons when wild dog predation might occur, baiting can be counter-productive. Baiting appears to produce perturbations that change the way surviving or re-colonising wild dog populations select and handle prey and/or how they interact with livestock.
Resumo:
Context. Irregular plagues of house mice cause high production losses in grain crops in Australia. If plagues can be forecast through broad-scale monitoring or model-based prediction, then mice can be proactively controlled by poison baiting. Aims. To predict mouse plagues in grain crops in Queensland and assess the value of broad-scale monitoring. Methods. Regular trapping of mice at the same sites on the Darling Downs in southern Queensland has been undertaken since 1974. This provides an index of abundance over time that can be related to rainfall, crop yield, winter temperature and past mouse abundance. Other sites have been trapped over a shorter time period elsewhere on the Darling Downs and in central Queensland, allowing a comparison of mouse population dynamics and cross-validation of models predicting mouse abundance. Key results. On the regularly trapped 32-km transect on the Darling Downs, damaging mouse densities occur in 50% of years and a plague in 25% of years, with no detectable increase in mean monthly mouse abundance over the past 35 years. High mouse abundance on this transect is not consistently matched by high abundance in the broader area. Annual maximum mouse abundance in autumn–winter can be predicted (R2 = 57%) from spring mouse abundance and autumn–winter rainfall in the previous year. In central Queensland, mouse dynamics contrast with those on the Darling Downs and lack the distinct annual cycle, with peak abundance occurring in any month outside early spring.Onaverage, damaging mouse densities occur in 1 in 3 years and a plague occurs in 1 in 7 years. The dynamics of mouse populations on two transects ~70 km apart were rarely synchronous. Autumn–winter rainfall can indicate mouse abundance in some seasons (R2 = ~52%). Conclusion. Early warning of mouse plague formation in Queensland grain crops from regional models should trigger farm-based monitoring. This can be incorporated with rainfall into a simple model predicting future abundance that will determine any need for mouse control. Implications. A model-based warning of a possible mouse plague can highlight the need for local monitoring of mouse activity, which in turn could trigger poison baiting to prevent further mouse build-up.
Resumo:
Australian cotton (Gossypium hirsutum L.) is predominantly grown on heavy clay soils (Vertosols). Cotton grown on Vertosols often experiences episodes of low oxygen concentration in the root-zone, particularly after irrigation events. In subsurface drip-irrigation (SDI), cotton receives frequent irrigation and sustained wetting fronts are developed in the rhizosphere. This can lead to poor soil diffusion of oxygen, causing temporal and spatial hypoxia. As cotton is sensitive to waterlogging, exposure to this condition can result in a significant yield penalty. Use of aerated water for drip irrigation (‘oxygation’) can ameliorate hypoxia in the wetting front and, therefore, overcome the negative effects of poor soil aeration. The efficacy of oxygation, delivered via SDI to broadacre cotton, was evaluated over seven seasons (2005–06 to 2012–13). Oxygation of irrigation water by Mazzei air-injector produced significantly (P < 0.001) higher yields (200.3 v. 182.7 g m–2) and water-use efficiencies. Averaged over seven years, the yield and gross production water-use index of oxygated cotton exceeded that of the control by 10% and 7%, respectively. The improvements in yields and water-use efficiency in response to oxygation could be ascribed to greater root development and increased light interception by the crop canopies, contributing to enhanced crop physiological performance by ameliorating exposure to hypoxia. Oxygation of SDI contributed to improvements in both yields and water-use efficiency, which may contribute to greater economic feasibility of SDI for broadacre cotton production in Vertosols.
Resumo:
Weed management practices in cotton systems that were based on frequent cultivation, residual herbicides, and some post-emergent herbicides have changed. The ability to use glyphosate as a knockdown before planting, in shielded sprayers, and now over-the-top in glyphosate-tolerant cotton has seen a significant reduction in the use of residual herbicides and cultivation. Glyphosate is now the dominant herbicide in both crop and fallow. This reliance increases the risk of shifts to glyphosate-tolerant species and the evolution of glyphosate-resistant weeds. Four surveys were undertaken in the 2008-09 and 2010-11 seasons. Surveys were conducted at the start of the summer cropping season (November-December) and at the end of the same season (March-April). Fifty fields previously surveyed in irrigated and non-irrigated cotton systems were re-surveyed. A major species shift towards Conyza bonariensis was observed. There was also a minor increase in the prevalence of Sonchus oleraceus. Several species were still present at the end of the season, indicating either poor control and/or late-season germinations. These included C. bonariensis, S. oleraceus, Hibiscus verdcourtii and Hibiscus tridactylites, Echinochloa colona, Convolvulus sp., Ipomea lonchophylla, Chamaesyce drummondii, Cullen sp., Amaranthus macrocarpus, and Chloris virgata. These species, with the exception of E. colona, H. verdcourtii, and H. tridactylites, have tolerance to glyphosate and therefore are likely candidates to either remain or increase in dominance in a glyphosate-based system.
Resumo:
Do alien invasive species exhibit life history characteristics that are similar to those of native species that have become pests in their continent of origin? We compared eucalypt specialists that have become pests in Australian plantations (natives) to those that have established overseas (aliens) using 13 life history traits and found that although traits that support rapid population build-up were shared, overall, aliens and native colonisers differed significantly. Distance from source (New Zealand vs. other) had no significant effect, but species that established more than 50 years ago exhibited different life history traits from those that established within the last 50 years, possibly because of more effective quarantine. Native and alien eucalypt insect invaders differed predominantly in traits that facilitate long-distance movement (pathway traits), compared to traits that facilitate establishment and spread. Aliens had longer adult flight seasons, were smaller and more closely host-associated (cryptic eggs and larvae), had lower incidence of diapause (i.e. were more seasonally plastic) and more generations per year than natives. Thus, studies of species invasive within their country of origin can shed light on alien invasions.
Resumo:
* Plant response to drought is complex, so that traits adapted to a specific drought type can confer disadvantage in another drought type. Understanding which type(s) of drought to target is of prime importance for crop improvement. * Modelling was used to quantify seasonal drought patterns for a check variety across the Australian wheatbelt, using 123 yr of weather data for representative locations and managements. Two other genotypes were used to simulate the impact of maturity on drought pattern. * Four major environment types summarized the variability in drought pattern over time and space. Severe stress beginning before flowering was common (44% of occurrences), with (24%) or without (20%) relief during grain filling. High variability occurred from year to year, differing with geographical region. With few exceptions, all four environment types occurred in most seasons, for each location, management system and genotype. * Applications of such environment characterization are proposed to assist breeding and research to focus on germplasm, traits and genes of interest for target environments. The method was applied at a continental scale to highly variable environments and could be extended to other crops, to other drought-prone regions around the world, and to quantify potential changes in drought patterns under future climates.
Resumo:
An observational study was undertaken to measure odour and dust (PM10 and PM2.5) emission rates and identify non-methane volatile organic compounds (NMVOCs) and odorants in the exhaust air from two tunnel-ventilated layer-chicken sheds that were configured with multi-tiered cages and manure belts. The study sites were located in south-eastern Queensland and the West Gippsland region of Victoria, Australia. Samples were collected in summer and winter on sequential days across the manure-belt cleaning cycle. Odour emissions ranged from 58 to 512 ou/s per 1000 birds (0.03-0.27 ou/s.kg) and dust emission rates ranged 0.014-0.184 mg/s per 1000 birds for PM10 and 0.001-0.190 mg/s per 1000 birds for PM2.5. Twenty NMVOCs were identified, including three that were also identified as odorants using thermal desorption-gas chromatography-mass spectrometry/olfactometry analysis. Odour emission rates were observed to vary with the amount of manure accumulation on the manure belts, being lowest 2-4 days after removing manure. Odour emission rates were also observed to vary with diurnal and seasonal changes in ventilation rate. Dust emissions were observed to increase with ventilation rate but not with manure accumulation. Some NMVOCs were identified at both farms and in different seasons whereas others were observed only at one farm or in one season, indicating that odorant composition was influenced by farm-specific practices and season.
Resumo:
Glyphosate-resistant Echinochloa colona L. (Link) is becoming common in non-irrigated cotton systems. Echinochloa colona is a small seeded species that is not wind-blown and has a relatively short seed bank life. These characteristics make it a potential candidate to attempt to eradicate resistant populations when they are detected. A long term systems experiment was developed to determine the feasibility of attempting to eradicate glyphosate resistant populations in the field. To this point the established Best Management Practice (BMP) strategy of two non-glyphosate actions in crop and fallow have been sufficient to significantly reduce the numbers of plants emerging, and remaining at the end of the season. Additional eradication treatments showed slight improvement on the BMP strategy, however were not significant overall. The effects of additional eradication tactics are expected to be more noticeable as the seed bank gets driven down in subsequent seasons.
Resumo:
In the sub-tropical grain region of Australia, cotton and grains systems are now dominated by flaxleaf fleabane (Conyza bonariensis (L.) Cronquist), feathertop Rhodes grass (Chloris virgata Sw.) and awnless barnyard grass (Echinochloa colona (L.) Link). While control of these weed species is best achieved when they are young, previous studies have shown a potential for reducing seed viability and minimising seed bank replenishment by applying herbicides when plants are reproductive. Pot trials were established over two growing seasons to examine the effects of 2,4-D, 2,4-D + picloram, glyphosate and glufosinate which had been successful on other species, along with paraquat and haloxyfop (grasses only). Herbicides were applied at ¾ field rates in an attempt not to kill the plants. Flaxleaf fleabane plants were sprayed at two growth stages (budding and flowering) and the grasses were sprayed at two stages (late tillering/booting and flowering). Spraying flaxleaf fleabane at flowering reduced seed viability to 0% (of untreated) in all treatments except glyphosate (51%) and 2,4-D + picloram (8%). Seed viability was not reduced with the first and second regrowths with the exception of 2,4-D + picloram where viability was reduced to 20%. When sprayed at budding only 2,4-D + picloram reduced seed viability in both trials. Spraying the grasses at late tillering/booting did not reduce viability except for glufosinate on awnless barnyard grass (50%). Applying herbicides at flowering resulted in 0% seed viability in awnless barnyard grass from glufosinate, paraquat and glyphosate and 0% viability in feathertop Rhodes grass for glufosinate. These herbicides were less effective on heads that emerged and flowered after spraying, only slightly reducing seed viability. These trials have shown that attempts to reduce seed viability have potential, however flaxleaf fleabane and feathertop Rhodes grass are able to regrow and will need on-going monitoring and control measures.