974 resultados para Sap flow density
Resumo:
Generation of neoepitopes on apolipoprotein B within oxidised low-density lipoprotein (LDL) is important in the unregulated uptake of LDL by monocytic scavenger receptors (CD36, SR-AI, LOX-1). Freshly isolated LDL was oxidised by peroxyl radicals generated from the thermal decomposition of an aqueous azo-compound. We describe that formation of carbonyl groups on the protein component is early as protein oxidation was seen after 90min. This is associated with an increased propensity for LDL uptake by U937 monocytes. Three classes of antioxidants (quercetin, dehydroepiandrosterone (DHEA) and ascorbic acid) have been examined for their capacity to inhibit AAPH-induced protein oxidation, (protein carbonyls, Δ electrophoretic mobility and LDL uptake by U937 monocytes). CD36 expression was assessed by flow cytometry and was seen to be unaltered by oxidised LDL uptake. All three classes were effective antioxidants, quercetin (P<0.01), ascorbic acid (P<0.01), DHEA (P<0.05). As LDL protein is the control point for LDL metabolism, the degree of oxidation and protection by antioxidants is likely to be of great importance for (patho)-physiological uptake of LDL by monocytes. © 2003 Elsevier B.V. All rights reserved.
Resumo:
There is currently considerable interest in developing general non-linear density models based on latent, or hidden, variables. Such models have the ability to discover the presence of a relatively small number of underlying `causes' which, acting in combination, give rise to the apparent complexity of the observed data set. Unfortunately, to train such models generally requires large computational effort. In this paper we introduce a novel latent variable algorithm which retains the general non-linear capabilities of previous models but which uses a training procedure based on the EM algorithm. We demonstrate the performance of the model on a toy problem and on data from flow diagnostics for a multi-phase oil pipeline.
Resumo:
An experimental and theoretical study of the transport of mineral wool fibre agglomerates in nuclear power plant containment sumps is being performed. A racetrack channel was devised to provide data for the validation of numerical models, which are intended to model the transport of fibre agglomerates. The racetrack channel provides near uniform and steady conditions that lead to either the sedimentation or suspension of the agglomerates. Various experimental techniques were used to determine the velocity conditions and the distribution of the fibre agglomerates in the channel. The fibre agglomerates are modelled as fluid particles in the Eulerian reference frame. Simulations of pure sedimentation of a known mass and volume of agglomerations show that the transport of the fibre agglomerates can be replicated. The suspension of the fibres is also replicated in the simulations; however, the definition of the fibre agglomerate phase is strongly dependent on the selected density and diameter. Detailed information on the morphology of the fibre agglomerates is lacking for the suspension conditions, as the fibre agglomerates may undergo breakage and erosion. Therefore, ongoing work, which is described here, is being pursued to improve the experimental characterisation of the suspended transport of the fibre agglomerates.
Resumo:
A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.
Resumo:
The flow behaviour of shallow gas-fluidised beds was studied. experimentally using a rotational viscometer, and an inclined open channel. Initially, tests were carried out with the viscometer in order to establish qualitative trends in the flow properties of a variety of materials over a wide range of fluidising conditions. Also, a technique was developed which enabled quantitative viscosity data to be extracted from the experimental results. The flow properties were found to be sensitive to the size, size-range and density of the fluidised material, the type of distributor used, and the moisture content of the fluidising gas. Tests in beds up to 120 mm deep showed that the fluidity of the bed improves with reduction in depth; and indicated a range of flow behaviour from shear-thinning to Newtonian, depending chiefly on fluidising velocity .. Later, an apparatus was built which provided for a steady, continuous flow of fluidised material down an inclined open channel of 3m length x 0.15m square, up to a mass flowrate of 10 kg/s (35 ton/hr). This facility has enabled data to be obtained that is of practical value in industrial applications; which is otherwise difficult in view of the present limited understanding of the true mechanism of fluidised flow. A correlation has been devised, based on analogy with laminar liquid flow, which describes the channel flow behaviour with reasonable accuracy over the whole range of shear-rates used. 1he channeI results indicated that at low fluidiising velocities the flow was adversely affected by settlement of a stagnant layer of particles on to the distributor, which gave rise to increased flow resistance. Conversely, at higher fluidising velocities the resistance at the distributor appeared to be less than at the walls. In view of this, and also because of the disparity in shear-rates between the two types of apparatus, it is not possible as yet to predict exactly the flow behaviour in an open channel from small-scale viscometer tests.
Resumo:
An electrostatic model is developed for osmotic flow across a layer consisting of identical circular cylinders with a fixed surface charge, aligned parallel to each other so as to form an ordered hexagonal arrangement. The expression of the osmotic reflection coefficient is derived for spherical solutes with a fixed surface charge suspended in an electrolyte, based on low-Reynolds-number hydrodynamics and a continuum, point-charge description of the electric double layers. The repulsive electrostatic interaction between the surface charges with the same sign on the solute and the cylinders is shown to increase the exclusion region of solute from the cylinder surface, which enhances the osmotic flow. Applying the present model to the study of osmotic flow across the endothelial surface glycocalyx of capillary walls has revealed that this electrostatic model could account well for the reflection coefficients measured for charged macromolecules, such as albumin, in the physiological range of charge density and ion concentration.
Resumo:
Using the analogy between lateral convection of heat and the two-phase flow in bubble columns, alternative turbulence modelling methods were analysed. The k-ε turbulence and Reynolds stress models were used to predict the buoyant motion of fluids where a density difference arises due to the introduction of heat or a discrete phase. A large height to width aspect ratio cavity was employed in the transport of heat and it was shown that the Reynolds stress model with the use of velocity profiles including the laminar flow solution resulted in turbulent vortices developing. The turbulence models were then applied to the simulation of gas-liquid flow for a 5:1 height to width aspect ratio bubble column. In the case of a gas superficial velocity of 0.02 m s-1 it was determined that employing the Reynolds stress model yielded the most realistic simulation results. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Изследвано е цилиндрично течение на Кует за разреден газ между два въртящи се цилиндъра. Получени са профилите на налягането, скоростта и температурата по метода на прякото статистическо моделиране (DSMC) и чрез числено решаване на уравненията на Навие-Стокс за свиваем флуид. Резултатите сочат много добро съвпадение за малки числа на Кнудсен Kn = 0.02. Показано е, че при различни кинематични гранични условия, газът изостава или избързва спрямо скоростта на стената, или има поведение на твърдо еластично тяло. Получените резултати са важни при решаването на неравнинни, задачи от микрофлуидиката с отчитане на ефектите на кривината.
Resumo:
Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Иследвано е цилиндрично течение на Кует на разреден газ в случая на въртене на два коаксиални цилиндъра с еднакви по големина скорости, но в различни посоки. Целта на изследването е да се установи влиянието на малки скорости на въртене върху макрохарактеристиките – ρ, V , . Числените резултати са получени чрез използване на DSMC и числено решение на уравненията на Навие-Стокс за относително малки (дозвукови) скорости на въртене. Установено е добро съвпадение на резултатите получени по двата метода за Kn = 0.02. Установено е, че съществува “стационарна” точка за плътността и скоростта. Получените резултати са важни при решаването на неравнини, задачи от микрофлуидиката с отчитане на ефектите на кривината. Ключови думи: Механика на флуидите, Кинетична теория, Разреден газ, DSMC
Resumo:
Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Изследвано е стационарно течение на Кует на разреден газ в случая на въртене на вътрешния цилиндър и неподвижен външен цилиндър чрез използване на DSMC метод и числено решение на уравненията на Навие–Стокс за относително малка (дозвукова) скорост на въртене. Изследвани са различни случаи при промяна на температурата на въртящият се цилиндър и числото на Кнудсен. Целта на изследването е да се установи влиянието на малки скорости на въртене върху макрохарактеристиките – плътността, скоростта и температурата на газа. Установено е добро съвпадение на резултатите получени по двата метода за Kn = 0.02. Получените резултати са важни при решаването на неравнинни, задачи от микрофлуидиката с отчитане на ефектите на кривината. Ключови думи: механика на флуидите, кинетична теория, разреден газ, DSMC.
Resumo:
More than 165 induction times of butyl paraben-ethanol solution in a batch moving fluid oscillation baffled crystallizer with various amplitudes (1-9 mm) and frequencies (1.0-9.0 Hz) have been determined to study the effect of COBR operating conditions on nucleation. The induction time decreases with increasing amplitude and frequency at power density below about 500 W/m3; however, a further increase of the frequency and amplitude leads to an increase of the induction time. The interfacial energies and pre-exponential factors in both homogeneous and heterogeneous nucleation are determined by classical nucleation theory at oscillatory frequency 2.0 Hz and amplitudes of 3 or 5 mm both with and without net flow. To capture the shear rate conditions in oscillatory flow crystallizers, a large eddy simulation approach in a computational fluid dynamics framework is applied. Under ideal conditions the shear rate distribution shows spatial and temporal periodicity and radial symmetry. The spatial distributions of the shear rate indicate an increase of average and maximum values of the shear rate with increasing amplitude and frequency. In continuous operation, net flow enhances the shear rate at most time points, promoting nucleation. The mechanism of the shear rate influence on nucleation is discussed.
Resumo:
This research is to establish new optimization methods for pattern recognition and classification of different white blood cells in actual patient data to enhance the process of diagnosis. Beckman-Coulter Corporation supplied flow cytometry data of numerous patients that are used as training sets to exploit the different physiological characteristics of the different samples provided. The methods of Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used as promising pattern classification techniques to identify different white blood cell samples and provide information to medical doctors in the form of diagnostic references for the specific disease states, leukemia. The obtained results prove that when a neural network classifier is well configured and trained with cross-validation, it can perform better than support vector classifiers alone for this type of data. Furthermore, a new unsupervised learning algorithm---Density based Adaptive Window Clustering algorithm (DAWC) was designed to process large volumes of data for finding location of high data cluster in real-time. It reduces the computational load to ∼O(N) number of computations, and thus making the algorithm more attractive and faster than current hierarchical algorithms.
Resumo:
Currently the data storage industry is facing huge challenges with respect to the conventional method of recording data known as longitudinal magnetic recording. This technology is fast approaching a fundamental physical limit, known as the superparamagnetic limit. A unique way of deferring the superparamagnetic limit incorporates the patterning of magnetic media. This method exploits the use of lithography tools to predetermine the areal density. Various nanofabrication schemes are employed to pattern the magnetic material are Focus Ion Beam (FIB), E-beam Lithography (EBL), UV-Optical Lithography (UVL), Self-assembled Media Synthesis and Nanoimprint Lithography (NIL). Although there are many challenges to manufacturing patterned media, the large potential gains offered in terms of areal density make it one of the most promising new technologies on the horizon for future hard disk drives. Thus, this dissertation contributes to the development of future alternative data storage devices and deferring the superparamagnetic limit by designing and characterizing patterned magnetic media using a novel nanoimprint replication process called "Step and Flash Imprint lithography". As opposed to hot embossing and other high temperature-low pressure processes, SFIL can be performed at low pressure and room temperature. Initial experiments carried out, consisted of process flow design for the patterned structures on sputtered Ni-Fe thin films. The main one being the defectivity analysis for the SFIL process conducted by fabricating and testing devices of varying feature sizes (50 nm to 1 μm) and inspecting them optically as well as testing them electrically. Once the SFIL process was optimized, a number of Ni-Fe coated wafers were imprinted with a template having the patterned topography. A minimum feature size of 40 nm was obtained with varying pitch (1:1, 1:1.5, 1:2, and 1:3). The Characterization steps involved extensive SEM study at each processing step as well as Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) analysis.
Resumo:
Surface water flow patterns in wetlands play a role in shaping substrates, biogeochemical cycling, and ecosystem characteristics. This paper focuses on the factors controlling flow across a large, shallow gradient subtropical wetland (Shark River Slough in Everglades National Park, USA), which displays vegetative patterning indicative of overland flow. Between July 2003 and December 2007, flow speeds at five sites were very low (s−1), and exhibited seasonal fluctuations that were correlated with seasonal changes in water depth but also showed distinctive deviations. Stepwise linear regression showed that upstream gate discharges, local stage gradients, and stage together explained 50 to 90% of the variance in flow speed at four of the five sites and only 10% at one site located close to a levee-canal combination. Two non-linear, semi-empirical expressions relating flow speeds to the local hydraulic gradient, water depths, and vegetative resistance accounted for 70% of the variance in our measured speed. The data suggest local-scale factors such as channel morphology, vegetation density, and groundwater exchanges must be considered along with landscape position and basin-scale geomorphology when examining the interactions between flow and community characteristics in low-gradient wetlands such as the Everglades.
Resumo:
Synthesizing data from multiple studies generates hypotheses about factors that affect the distribution and abundance of species among ecosystems. Snails are dominant herbivores in many freshwater ecosystems, but there is no comprehensive review of snail density, standing stock, or body size among freshwater ecosystems. We compile data on snail density and standing stock, estimate body size with their quotient, and discuss the major pattern that emerges. We report data from 215 freshwater ecosystems taken from 88 studies that we placed into nine categories. Sixty-five studies reported density, seven reported standing stock, and 16 reported both. Despite the breadth of studies, spatial and temporal sampling scales were limited. Researchers used 25 different sampling devices ranging in area from 0.0015 to 2.5 m2. Most ecosystem categories had similar snail densities, standing stocks, and body sizes suggesting snails shared a similar function among ecosystems. Caribbean karst wetlands were a striking exception with much lower density and standing stock, but large body size. Disparity in body size results from the presence of ampullariids in Caribbean karst wetlands suggesting that biogeography affects the distribution of taxa, and in this case size, among aquatic ecosystems. We propose that resource quality explains the disparity in density and standing stock between Caribbean karst wetlands and other categories. Periphyton in Caribbean karst wetlands has high carbon-to-phosphorous ratios and defensive characteristics that inhibit grazers. Unlike many freshwater ecosystems where snails are key grazers, we hypothesize that a microbial loop captures much of the primary production in Caribbean karst wetlands.