403 resultados para SYRIAN-HAMSTERS
Resumo:
Epidermal growth factor (EGF) and its receptors (EGFR) play important roles in tumorigenesis. In various experimental cancers, treatment with antagonists of bombesin/gastrin-releasing peptide (BN/GRP) produces a reduction in EGFRs, concomitant to inhibition of tumor growth. To investigate the mechanisms involved, we monitored concentrations of BN/GRP antagonist RC-3095 in serum of mice, rats, and hamsters given a single subcutaneous or intravenous injection of this analog. In parallel studies, we measured levels and mRNA expression of EGFRs in estrogen-dependent and independent MXT mouse mammary cancers, following a single subcutaneous administration of RC-3095 to tumor-bearing mice. Peak values of RC-3095 in serum were detected 2 min after intravenous or 15 min after subcutaneous injection. The levels of RC-3095 declined rapidly and became undetectable after 3–5 hr. In the estrogen-dependent MXT tumors, the concentration of EGF receptors was reduced by about 60% 6 hr following injection and returned to original level after 24 hr. Levels of mRNA for EGFR fell parallel with the receptor number and were nearly normal after 24 hr. In the hormone-independent MXT cancers, the number of EGFRs decreased progressively, becoming undetectable 6 hr after injection of RC-3095, and returned to normal values at 24 hr, but EGFR mRNA levels remained lower for 48 hr. Thus, in spite of rapid elimination from serum, BN/GRP antagonist RC-3095 can induce a prolonged decrease in levels and mRNA expression of EGFRs. These findings may explain how single daily injections of BN/GRP antagonists can maintain tumor growth inhibition.
Resumo:
The pervasive role of circadian clocks in regulating physiology and behavior is widely recognized. Their adaptive value is their ability to be entrained by environmental cues such that the internal circadian phase is a reliable predictor of solar time. In mammals, both light and nonphotic behavioral cues can entrain the principal oscillator of the hypothalamic suprachiasmatic nuclei (SCN). However, although light can advance or delay the clock during circadian night, behavioral events trigger phase advances during the subjective day, when the clock is insensitive to light. The recent identification of Period (Per) genes in mammals, homologues of dperiod, which encodes a core element of the circadian clockwork in Drosophila, now provides the opportunity to explain circadian timing and entrainment at a molecular level. In mice, expression of mPer1 and mPer2 in the SCN is rhythmic and acutely up-regulated by light. Moreover, the temporal relations between mRNA and protein cycles are consistent with a clock based on a transcriptional/translational feedback loop. Here we describe circadian oscillations of Per1 and Per2 in the SCN of the Syrian hamster, showing that PER1 protein and mRNA cycles again behave in a manner consistent with a negative-feedback oscillator. Furthermore, we demonstrate that nonphotic resetting has the opposite effect to light: acutely down-regulating these genes. Their sensitivity to nonphotic resetting cues supports their proposed role as core elements of the circadian oscillator. Moreover, this study provides an explanation at the molecular level for the contrasting but convergent effects of photic and nonphotic cues on the clock.
Resumo:
Cholesterol feeding reduces the mRNAs encoding multiple enzymes in the cholesterol biosynthetic pathway and the low density lipoprotein receptor in livers of hamsters. Here we show that cholesterol feeding also reduces the levels of the nuclear NH2-terminal domains of sterol regulatory element binding proteins (SREBPs), which activate transcription of sterol-regulated genes. We show that livers of hamsters, like those of mice and humans, predominantly produce SREBP-2 and the 1c isoform of SREBP-1. Both are produced as membrane-bound precursors that must be proteolyzed to release the transcriptionally active NH2-terminal domains. Diets containing 0.1% to 1.0% cholesterol decreased the amount of nuclear SREBP-1c without affecting the amount of the membrane precursor or its mRNA, suggesting that cholesterol inhibits the proteolytic processing of SREBP-1 in liver as it does in cultured cells. Cholesterol also appeared to reduce the proteolytic processing of SREBP-2. In addition, at high levels of dietary cholesterol the mRNA encoding SREBP-2 declined and the amount of the precursor also fell, suggesting that cholesterol accumulation also may inhibit transcription of the SREBP-2 gene. The high-cholesterol diets reduced the amount of low density lipoprotein receptor mRNA by 30% and produced a more profound 70–90% reduction in mRNAs encoding 3-hydroxy-3-methylglutaryl CoA synthase and reductase. Treatment with lovastatin and Colestipol, which increases hepatic demands for cholesterol, increased the amount of SREBP-2 mRNA as well as the precursor and nuclear forms of the protein. This treatment caused a reciprocal decline in SREBP-1c mRNA and protein. Considered together, these data suggest that SREBPs play important roles in controlling transcription of sterol-regulated genes in liver, as they do in cultured cells.
Resumo:
Aneuploidy or chromosome imbalance is the most massive genetic abnormality of cancer cells. It used to be considered the cause of cancer when it was discovered more than 100 years ago. Since the discovery of the gene, the aneuploidy hypothesis has lost ground to the hypothesis that mutation of cellular genes causes cancer. According to this hypothesis, cancers are diploid and aneuploidy is secondary or nonessential. Here we reexamine the aneuploidy hypothesis in view of the fact that nearly all solid cancers are aneuploid, that many carcinogens are nongenotoxic, and that mutated genes from cancer cells do not transform diploid human or animal cells. By regrouping the gene pool—as in speciation—aneuploidy inevitably will alter many genetic programs. This genetic revolution can explain the numerous unique properties of cancer cells, such as invasiveness, dedifferentiation, distinct morphology, and specific surface antigens, much better than gene mutation, which is limited by the conservation of the existing chromosome structure. To determine whether aneuploidy is a cause or a consequence of transformation, we have analyzed the chromosomes of Chinese hamster embryo (CHE) cells transformed in vitro. This system allows (i) detection of transformation within 2 months and thus about 5 months sooner than carcinogenesis and (ii) the generation of many more transformants per cost than carcinogenesis. To minimize mutation of cellular genes, we have used nongenotoxic carcinogens. It was found that 44 out of 44 colonies of CHE cells transformed by benz[a]pyrene, methylcholanthrene, dimethylbenzanthracene, and colcemid, or spontaneously were between 50 and 100% aneuploid. Thus, aneuploidy originated with transformation. Two of two chemically transformed colonies tested were tumorigenic 2 months after inoculation into hamsters. The cells of transformed colonies were heterogeneous in chromosome number, consistent with the hypothesis that aneuploidy can perpetually destabilize the chromosome number because it unbalances the elements of the mitotic apparatus. Considering that all 44 transformed colonies analyzed were aneuploid, and the early association between aneuploidy, transformation, and tumorigenicity, we conclude that aneuploidy is the cause rather than a consequence of transformation.
Resumo:
Results of transgenetic studies argue that the scrapie isoform of the prion protein (PrPSc) interacts with the substrate cellular PrP (PrPC) during conversion into nascent PrPSc. While PrPSc appears to accumulate primarily in lysosomes, caveolae-like domains (CLDs) have been suggested to be the site where PrPC is converted into PrPSc. We report herein that CLDs isolated from scrapie-infected neuroblastoma (ScN2a) cells contain PrPC and PrPSc. After lysis of ScN2a cells in ice-cold Triton X-100, both PrP isoforms and an N-terminally truncated form of PrPC (PrPC-II) were found concentrated in detergent-insoluble complexes resembling CLDs that were isolated by flotation in sucrose gradients. Similar results were obtained when CLDs were purified from plasma membranes by sonication and gradient centrifugation; with this procedure no detergents are used, which minimizes artifacts that might arise from redistribution of proteins among subcellular fractions. The caveolar markers ganglioside GM1 and H-ras were found concentrated in the CLD fractions. When plasma membrane proteins were labeled with the impermeant reagent sulfo-N-hydroxysuccinimide-biotin, both PrPC and PrPSc were found biotinylated in CLD fractions. Similar results on the colocalization of PrPC and PrPSc were obtained when CLDs were isolated from Syrian hamster brains. Our findings demonstrate that both PrPC and PrPSc are present in CLDs and, thus, support the hypothesis that the PrPSc formation occurs within this subcellular compartment.
Resumo:
The NMR structures of the recombinant human prion protein, hPrP(23–230), and two C-terminal fragments, hPrP(90–230) and hPrP(121–230), include a globular domain extending from residues 125–228, for which a detailed structure was obtained, and an N-terminal flexibly disordered “tail.” The globular domain contains three α-helices comprising the residues 144–154, 173–194, and 200–228 and a short anti-parallel β-sheet comprising the residues 128–131 and 161–164. Within the globular domain, three polypeptide segments show increased structural disorder: i.e., a loop of residues 167–171, the residues 187–194 at the end of helix 2, and the residues 219–228 in the C-terminal part of helix 3. The local conformational state of the polypeptide segments 187–193 in helix 2 and 219–226 in helix 3 is measurably influenced by the length of the N-terminal tail, with the helical states being most highly populated in hPrP(23–230). When compared with the previously reported structures of the murine and Syrian hamster prion proteins, the length of helix 3 coincides more closely with that in the Syrian hamster protein whereas the disordered loop 167–171 is shared with murine PrP. These species variations of local structure are in a surface area of the cellular form of PrP that has previously been implicated in intermolecular interactions related both to the species barrier for infectious transmission of prion disease and to immune reactions.
Resumo:
The NMR structures of the recombinant 217-residue polypeptide chain of the mature bovine prion protein, bPrP(23–230), and a C-terminal fragment, bPrP(121–230), include a globular domain extending from residue 125 to residue 227, a short flexible chain end of residues 228–230, and an N-terminal flexibly disordered “tail” comprising 108 residues for the intact protein and 4 residues for bPrP(121–230), respectively. The globular domain contains three α-helices comprising the residues 144–154, 173–194, and 200–226, and a short antiparallel β-sheet comprising the residues 128–131 and 161–164. The best-defined parts of the globular domain are the central portions of the helices 2 and 3, which are linked by the only disulfide bond in bPrP. Significantly increased disorder and mobility is observed for helix 1, the loop 166–172 leading from the β-strand 2 to helix 2, the end of helix 2 and the following loop, and the last turn of helix 3. Although there are characteristic local differences relative to the conformations of the murine and Syrian hamster prion proteins, the bPrP structure is essentially identical to that of the human prion protein. On the other hand, there are differences between bovine and human PrP in the surface distribution of electrostatic charges, which then appears to be the principal structural feature of the “healthy” PrP form that might affect the stringency of the species barrier for transmission of prion diseases between humans and cattle.
Resumo:
The NMR structures of three single-amino acid variants of the C-terminal domain of the human prion protein, hPrP(121–230), are presented. In hPrP(M166V) and hPrP(R220K) the substitution is with the corresponding residue in murine PrP, and in hPrP(S170N) it is with the corresponding Syrian hamster residue. All three substitutions are in the surface region of the structure of the cellular form of PrP (PrPC) that is formed by the C-terminal part of helix 3, with residues 218–230, and a loop of residues 166–172. This molecular region shows high species variability and has been implicated in specific interactions with a so far not further characterized “protein X,” and it is related to the species barrier for transmission of prion diseases. As expected, the three variant hPrP(121–230) structures have the same global architecture as the previously determined wild-type bovine, human, murine, and Syrian hamster prion proteins, but with the present study two localized “conformational markers” could be related with single amino acid exchanges. These are the length and quality of definition of helix 3, and the NMR-observability of the residues in the loop 166–172. Poor definition of the C-terminal part of helix 3 is characteristic for murine PrP and has now been observed also for hPrP(R220K), and NMR observation of the complete loop 166–172 has so far been unique for Syrian hamster PrP and is now also documented for hPrP(S170N).
Resumo:
Transmission of prions between mammalian species is thought to be limited by a “species barrier,” which depends on differences in the primary structure of prion proteins in the infecting inoculum and the host. Here we demonstrate that a strain of hamster prions thought to be nonpathogenic for conventional mice leads to prion replication to high levels in such mice but without causing clinical disease. Prions pathogenic in both mice and hamsters are produced. These results demonstrate the existence of subclinical forms of prion infection with important public health implications, both with respect to iatrogenic transmission from apparently healthy humans and dietary exposure to cattle and other species exposed to bovine spongiform encephalopathy prions. Current definitions of the species barrier, which have been based on clinical end-points, need to be fundamentally reassessed.
Resumo:
The prion diseases seem to be caused by a conformational change of the prion protein (PrP) from the benign cellular form PrPC to the infectious scrapie form PrPSc; thus, detailed information about PrP structure may provide essential insights into the mechanism by which these diseases develop. In this study, the secondary structure of the recombinant Syrian hamster PrP of residues 29–231 [PrP(29–231)] is investigated by multidimensional heteronuclear NMR. Chemical shift index analysis and nuclear Overhauser effect data show that PrP(29–231) contains three helices and possibly one short β-strand. Most striking is the random-coil nature of chemical shifts for residues 30–124 in the full-length PrP. Although the secondary structure elements are similar to those found in mouse PrP fragment PrP(121–231), the secondary structure boundaries of PrP(29–231) are different from those in mouse PrP(121–231) but similar to those found in the structure of Syrian hamster PrP(90–231). Comparison of resonance assignments of PrP(29–231) and PrP(90–231) indicates that there may be transient interactions between the additional residues and the structured core. Backbone dynamics studies done by using the heteronuclear [1H]-15N nuclear Overhauser effect indicate that almost half of PrP(29–231), residues 29–124, is highly flexible. This plastic region could feature in the conversion of PrPC to PrPSc by template-assisted formation of β-structure.
Resumo:
Cardiomyopathy (CM) is a primary degenerative disease of myocardium and is traditionally categorized into hypertrophic and dilated CMs (HCM and DCM) according to its gross appearance. Cardiomyopathic hamster (CM hamster), a representative model of human hereditary CM, has HCM and DCM inbred sublines, both of which descend from the same ancestor. Herein we show that both HCM and DCM hamsters share a common defect in a gene for δ-sarcoglycan (δ-SG), the functional role of which is yet to be characterized. A breakpoint causing genomic deletion was found to be located at 6.1 kb 5′ upstream of the second exon of δ-SG gene, and its 5′ upstream region of more than 27.4 kb, including the authentic first exon of δ-SG gene, was deleted. This deletion included the major transcription initiation site, resulting in a deficiency of δ-SG transcripts with the consequent loss of δ-SG protein in all the CM hamsters, despite the fact that the protein coding region of δ-SG starting from the second exon was conserved in all the CM hamsters. We elucidated the molecular interaction of dystrophin-associated glycoproteins including δ-SG, by using an in vitro pull-down study and ligand overlay assay, which indicates the functional role of δ-SG in stabilizing sarcolemma. The present study not only identifies CM hamster as a valuable animal model for studying the function of δ-SG in vivo but also provides a genetic target for diagnosis and treatment of human CM.
Resumo:
67Cu (t1/2 = 62 h) has demonstrated potential as a radionuclide for radioimmunotherapy, but limited availability severely restricts its widespread use. 64Cu (t1/2 = 12.8 h) has been shown to have comparable effectiveness in vitro and in vivo. The present study was undertaken to examine the therapeutic potential of 64Cu- and 67Cu-bromoacetamidobenzyl-1,4,8,11-tetraazacyclotetradeca ne-N, N',N",N"'-tetraacetic acid (BAT)-2-iminothiolane (2IT)-1A3 (1A3 is a mouse anti-human colorectal cancer mAb) for treatment of GW39 human colon carcinoma carried in hamster thighs. Hamsters were injected with 64Cu- or 67Cu-BAT-2IT-1A3 or Cu-labeled nonspecific IgG (MOPC) or saline. Hamsters were killed 6-7 months after therapy or when tumors were > or = 10 g. Of the hamsters with small tumors (mean weight 0.43 +/- 0.25 g), 87.5% were disease-free 7 months after treatment with 2 mCi (1 Ci = 37 GBq) of 64Cu-BAT-2IT-1A3 or 0.4 MCi of 67Cu-BAT-2IT-1A3. The mean tumor doses at these activities of 64Cu- and 67Cu-BAT-2IT-1A3 were 586 and 1269 rad (1 rad = 0.01 Gy), respectively. In contrast, 76% of hamsters treated with 2 mCi of 64Cu-BAT-2IT-MOPC or 0.4 mCi of 67Cu-BAT-2IT-MOPC had to be killed before 6 months because of tumor regrowth. When hamsters with larger tumors (mean weight 0.66 +/- 0.11 g) were treated with 64Cu- or 67Cu-BAT-2IT-1A3, survival was extended compared with controls, but only one animal remained tumor-free to 6 months. These results demonstrate that 64Cu- and 67Cu-BAT-2IT-1A3 given in a single administered dose can eradicate small tumors without significant host toxicity, but additional strategies to deliver higher tumor doses will be needed for larger tumors.
Resumo:
Oxidative injury to the pulmonary endothelium has pathological significance for a spectrum of diseases. Administration of antioxidant enzymes, superoxide dismutase (SOD) and catalase (Cat), has been proposed as a method to protect endothelium. However, neither these enzymes nor their derivatives possess specific affinity to endothelium and do not accumulate in the lung. Previously we have described a monoclonal antibody to angiotensin-converting enzyme (ACE) that accumulates selectively in the lung after systemic injection in rats, hamsters, cats, monkeys, and humans. In the present work we describe a system for selective intrapulmonary delivery of CuZn-SOD and Cat conjugated with biotinylated anti-ACE antibody mAb 9B9 (b-mAb 9B9) by a streptavidin (SA)-biotin bridge. Both enzymes biotinylated with biotin ester at biotin/enzyme ratio 20 retain enzymatic activity and bind SA without loss of activity. We have constructed tri-molecular heteropolymer complexes consisting of b-mAb 9B9, SA, and biotinylated SOD or biotinylated Cat and have studied biodistribution and pulmonary uptake of these complexes in the rat after i.v. injection. Biodistribution of biotinylated enzymes was similar to that of nonmodified enzymes. Binding of SA markedly prolonged lifetime of biotinylated enzymes in the circulation. In contrast to enzymes conjugated with nonspecific IgG, other enzyme derivatives, and nonmodified enzymes, biotinylated enzymes conjugated with b-mAb 9B9 accumulated specifically in the rat lung (9% of injected SOD/g of lung tissue and 7.5% of injected Cat/g of lung tissue). Pulmonary uptake of nonmodified enzymes or derivatives with nonspecific IgG did not exceed 0.5% of injected dose/g. Both SOD and Cat conjugated with b-mAb 9B9 were retained in the rat lung for at least several hours. Trichloracetic acid-precipitable radiolabeled Cat was associated with microsomal and plasma membrane fractions of the lung tissue homogenate. Thus, modification of antioxidant enzymes with biotin and SA-mediated conjugation with b-mAb 9B9 prolongs the circulation of enzymes resulting in selective accumulation in the lung and intracellular delivery of enzymes to the pulmonary endothelium. These results provide the background for an approach to provide protection of pulmonary endothelium against oxidative insults.
Resumo:
In addition to the five 70-kDa heat shock proteins (HSP70) common to germ cells and somatic tissues of mammals, spermatogenic cells synthesize HSP70-2 during meiosis. To determine if this unique stress protein has a critical role in meiosis, we used gene-targeting techniques to disrupt Hsp70-2 in mice. Male mice homozygous for the mutant allele (Hsp70-2 -/-) did not synthesize HSP70-2, lacked postmeiotic spermatids and mature sperm, and were infertile. However, neither meiosis nor fertility was affected in female Hsp70-2 -/- mice. We previously found that HSP70-2 is associated with synaptonemal complexes in the nucleus of meiotic spermatocytes from mice and hamsters. While synaptonemal complexes assembled in Hsp70-2 -/- spermatocytes, structural abnormalities became apparent in these cells by late prophase, and development rarely progressed to the meiotic divisions. Furthermore, analysis of nuclei and genomic DNA indicated that the failure of meiosis in Hsp70-2 -/- mice was coincident with a dramatic increase in spermatocyte apoptosis. These results suggest that HSP70-2 participates in synaptonemal complex function during meiosis in male germ cells and is linked to mechanisms that inhibit apoptosis.
Resumo:
Variants of chemically immortalized Syrian hamster embryo cells that had either retained (supB+) or lost (supB-) the ability to suppress tumorigenicity when hybridized with a fibrosarcoma cell line were subcloned. Both supB cell types are nontumorigenic; however, the supB- but not supB+ cells exhibit conditional anchorage-independent growth. Alterations of actin microfilament organization were observed in supB- but not supB+ cells that corresponded to a significant reduction of the actin-binding protein tropomyosin 1 (TM-1) in subB- cells. To examine the possibility of a direct relationship between TM-1 expression and the subB- phenotype, subB+ cells were transfected with an expression vector containing the TM-1 cDNA in an antisense orientation. The antisense-induced reduction of TM-1 levels in supB+ clones caused a microfilament reorganization and conferred anchorage-independent growth potential that were indistinguishable from those characteristic of supB- cells. These data provide direct evidence that TM-1 regulates both microfilament organization and anchorage-independent growth and suggest that microfilament alterations are sufficient for anchorage-independent growth.