886 resultados para STYRENE-BUTADIENE RUBBER
Science and technology of rubber reclamation with special attention to NR-based waste latex products
Resumo:
A comprehensive overview of reclamation of cured rubber with special emphasis on latex reclamation is depicted in this paper. The latex industry has expanded over the years to meet the world demands for gloves, condoms, latex thread, etc. Due to the strict specifications for the products and the unstable nature of the latex as high as 15% of the final latex products are rejected. As waste latex rubber (WLR) represents a source of high-quality rubber hydrocarbon, it is a potential candidate for generating reclaimed rubber of superior quality. The role of the different components in the reclamation recipe is explained and the reaction mechanism and chemistry during reclamation are discussed in detail. Different types of reclaiming processes are described with special reference to processes, which selectively cleave the cross links in the vulcanized rubber. The state-of-the-art techniques of reclamation with special attention on latex treatment are reviewed. An overview of the latest development concerning the fundamental studies in the field of rubber recycling by means of low-molecular weight compounds is described. A mathematical model description of main-chain and crosslink scission during devulcanization of a rubber vulcanizate is also given.
Resumo:
Amine Terminated Liquid Natural Rubber (ATNR) was used as a plasticiser in filled NR and NBR compounds replacing oil/DOP. The scorch time and cure time were found to be lowered when ATNR was used as the plasticiser. ATNR was found to improve the mechanical properties like tensile strength, tear strength and modulus of the vulcanizates . The ageing resistance of the vulcanizates containing ATNR was superior compared to the vulcanizates containing oil/DOP.
Resumo:
Scrap latex products contain rubber hydrocarbon of very high quality, that is only slightly crosslinked. A novel economic technique for converting such latex waste into a processible material is developed. This paper reports the effect of adding this latex reclaim to natural rubber. It is shown that latex reclaim can replace raw natural rubber up to about 50 wt.% without affecting mechanical properties.
Resumo:
In natural rubber/high styrene resin microcellular sheets, part of natural rubber was replaced by latex reclaim prepared from waste latex products. The mechanical properties and cell structure of the products were evaluated. It was found that latex reclaim can replace about 30% of natural rubber without affecting the technical properties of the microcellular sheets.
Resumo:
Diphenylamine was chemically attached to depolymerised natural rubber by photochemical reaction. The rubber-bound diphenylamine was characterised by TLC, HNMR, IR and TGA. The efficiency and permanence of the bound diphenylamine was compared with conventional amine type antioxidant in natural rubber vulcanizates. The rubber-bound diphenylamine was found to be less volatile and less extractable compared to the conventional antioxidant. The vulcanizates showed improved ageing resistance in comparison to vulcanizates containing conventional antioxidant . Also, the presence of liquid rubber-bound diphenylamine reduces the amount of plasticiser required for compounding.
Resumo:
Antioxidants were attached to hydroxy-terminated liquid natural rubber by modified Friedel-Crafts alkylation reaction using anhydrous zinc chloride as catalyst. The rubber bound antioxidants were found to be less volatile and less extractable compared to conventional antioxidants. The bound antioxidants were tried both in latex compounds and dry rubber compounds. The vulcanizates showed improved ageing resistance compared to vulcanizates based on conventional antioxidants.
Resumo:
Para-phenylenediamine (PD) was chemically attached to depolymerized natural rubber by a photochemical reaction . The rubber bound PD was characterized by TLC, 1H-NMR, IR, and TGA. The efficiency and permanence of the bound PD were compared with conventional antioxidants in NBR vulcanizates . The rubber bound PD was found to be less volatile and more resistant to water and oil extraction . The vulcanizates showed improved aging resistance in comparison to vulcanizates containing conventional antioxidants. The liquid rubber bound antioxidant reduces the amount of plasticizer required for compounding
Resumo:
Carboxy Terminated Liquid Natural Rubber (CTNR) was prepared by photochemical reaction using maleic anhydride and masticated natural rubber (NR). The use of CTNR as an adhesive in bonding rubber to rubber and rubber to metal was studied. The peel strengths and lap shear strengths of the adherends which were bonded using CTNR were determined. The effect of using a tri isocyanate with CTNR in rubber to metal bonding was also studied. It is found that CTNR can effectively be used in bonding rubber to rubber and rubber to mild steel.
Resumo:
ABSTRACT: The electrical conductivity of silicone rubber vulcanizates containing carbon blacks [e.g., acetylene black, lamp black, and ISAF (N-234) black] were investigated. The change in electrical conductivity with varying amounts of carbon blacks and the temperature dependence was measured. The mechanical properties like tensile strength, tear strength, elongation at break, hardness, etc., of the vulcanizates were determined. A comparative study of the electrical conductivity of the composites revealed that the electrical conductivity of the composites made with acetylene black was higher than that of the composites made of other blacks.
Resumo:
ABSTRACT: Nylon tire cord (1680/2) was dipped in different adhesives based on resorcinol formaldehyde resin and latex (RFL) and was bonded to natural rubber-based compounds. The resin-rubber ratio in the RFL adhesive was optimized. The variation of pull-through load was studied by varying the drying and curing temperature of the dipped nylon tire cord. RFL adhesive based on vinylpyridine latex was found to have better rubber-to-nylon tire cord bonding, compared with the one based on natural rubber latex. Addition of a formaldehyde donor into the RFL adhesive/rubber compound improves adhesion.
Resumo:
Rubber solutions were prepared and used for bonding wood pieces. The effect of the variation of chlorinated natural rubber (CNR) and phenolformaldehyde (PF) resin in the adhesive solutions on lap shear strength was determined. Natural rubber and neoprene-based adhesive solutions were compared for their lap shear strength. The storage stability of the adhesive prepared was determined. The change in lap shear strength before and after being placed in cold water, hot water, acid, and alkali was tested. The bonding character of these adhesives was compared with different commercially available solution adhesives. The room-temperature aging resistance of wood joints was also determined. In all the studies, the adhesive prepared in the laboratory was found to be superior compared to the commercial adhesives.
Resumo:
ABSTRACT: p-Phenylenediamine was chemically attached to low molecular weight chlorinated paraffin wax. The polymer-bound p-phenylenediamine was characterized by vapor-phase osmometry (VPO), proton magnetic resonance spectroscopy ('H-NMR), infrared spectroscopy (IR), and thermogravimetric analysis (TGA). The efficiency and permanence of the polymer-bound p-phenylenediamine as an antioxidant was compared with a conventional amine-type antioxidant in natural rubber vulcanizates. The vulcanizates showed improved aging resistance in comparison to vulcanizates containing a conventional antioxidant. The presence of liquid polymer-bound p-phenylenediamine also reduces the amount of the plasticizer required for compounding.
Resumo:
ABSTRACT: Phenol was chemically attached to low molecular weight chlorinated polyisobutylene and stearic acid respectively. These phenolic antioxidants were characterised by IR, 1H NMR and TGA. The efficiency and permanence of these bound antioxidants were compared with conventional antioxidants in natural rubber vulcanisates. The vulcanisates showed comparable ageing resistance in comparison to vulcanisates containing conventional antioxidants. The presence of liquid polymer bound phenol reduce the amount of plasticiser required for compounding.
Resumo:
ABSTRACT: Zinc salts of ethyl, isopropyl, and butyl xanthates were prepared in the laboratory. They were purified by reprecipitation and were characterized by IR, NMR, and thermogravimetric analysis techniques. The melting points were also determined. The rubber compounds with different xanthate accelerators were cured at temperatures from 30 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density, elongation at break, and modulus at 300% elongation were evaluated. The properties showed that all three xanthate accelerators are effective for room temperature curing.
Resumo:
Blends of nitrile rubber and reclaimed rubber containing different levels of a coupling agent, Si 69 (bis(3- triethoxysilyl propyl)(tetrasulphide) were prepared and the cure characteristic's and mechanical properties were studied. Optimum loading of Si-69 was found to be a function of blend ratio. 3 phi- of Si 69 in a 70:30. Blend was found to be the optimum combination with respect to the mechanical properties. The rate and state of cure were also affected bv the conp/ing agent. Tensile strength, tear strength and abrasion resistance were improved in the presence of coupling agent. While the state of cure improved, the cure rate and scorch time decreased with increasing silane content. Ageing studies showed that the blends containing the coupling agent were inferior to the unmodified blends.