864 resultados para STIMULATED INSULIN-SECRETION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report describes the case of an 88-year-old non-diabetic female who presented to the emergency department following a presumed hypoijtycaemic collapse due to self-neglect. Subsequent rewarming and resuscitation demonstrated a number of the significant consequences of severe hypothermia, including apparent secondary impairment of glycaemic autoregulation. The phenomenon of reversible inhibition of insulin secretion due to severe hypothermia has been documented previously in the field of cardiac surgery. The hyperglycaemia was not treated with any antihyperglycaernic agent, and her recovery was uneventful. Subsequent blood sugar level monitoring was normal. If insulin is administered to the hypothermic patient, intensive monitoring of blood glucose is essential due to the increase in endogenous insulin secretion on rewarming. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

C-terminal acylation of Lys(37) with myristic (MYR; tetradecanoic acid), palmitic (PAL; hexadecanoic acid) and stearic (octadecanoic acid) fatty acids with or without N-terminal acetylation was employed to develop long-acting analogues of the glucoregulatory hormone, glucose-dependent insulinotropic polypeptide (GIP). All GIP analogues exhibited resistance to dipeptidylpeptidase-IV (DPP-IV) and significantly improved in vitro cAMP production and insulin secretion. Administration of GIP analogues to ob/ob mice significantly lowered plasma glucose-GIP(Lys(37)MYR), N-AcGIP(Lys(37)MYR) and GIP(Lys(37)PAL) increased plasma insulin concentrations. GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) elicited protracted glucose-lowering effects when administered 24h prior to an intraperitoneal glucose load. Daily administration of GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) to ob/ob mice for 24 days decreased glucose and significantly improved plasma insulin, glucose tolerance and beta-cell glucose responsiveness. Insulin sensitivity, pancreatic insulin content and triglyceride levels were not changed. These data demonstrate that C-terminal acylation particularly with myristic acid provides a class of stable, longer-acting forms of GIP for further evaluation in diabetes therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing prevalence, variable pathogenesis, progressive natural history, and complications of type 2 diabetes emphasise the urgent need for new treatment strategies. Longacting (eg, once weekly) agonists of the glucagon-like-peptide-1 receptor are advanced in development, and they improve prandial insulin secretion, reduce excess glucagon production, and promote satiety. Trials of inhibitors of dipeptidyl peptidase 4, which enhance the effect of endogenous incretin hormones, are also nearing completion. Novel approaches to glycaemic regulation include use of inhibitors of the sodium-glucose cotransporter 2, which increase renal glucose elimination, and inhibitors of 11ß-hydroxysteroid dehydrogenase 1, which reduce the glucocorticoid effects in liver and fat. Insulin-releasing glucokinase activators and pancreatic-G-protein-coupled fatty-acid-receptor agonists, glucagon-receptor antagonists, and metabolic inhibitors of hepatic glucose output are being assessed. Early proof of principle has been shown for compounds that enhance and partly mimic insulin action and replicate some effects of bariatric surgery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many patients with type 2 diabetes are obese (diabesity), and the two conditions together impose a particularly complex therapeutic challenge. Several differently acting agents are often required at the same time, encouraging development of more single-tablet combinations. Longer-acting (once daily and once weekly) injected agonists of glucagon-like peptide-1 are due to provide additional options to stimulate insulin secretion with weight loss and minimal risk of hypoglycemia. Further, dipeptidyl peptidase-4 inhibitors ("weight-neutral" insulinotropic agents) are also expected. Sodium-glucose cotransporter 2 inhibitors offer a new option to reduce hyperglycemia and facilitate weight loss by increasing the elimination of glucose in the urine. Selective peroxisome proliferator-activated receptor modulators are being studied to produce compounds with desired effects. Many other agents with antidiabetic and antiobesity activity are progressing in clinical development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type 2 diabetes is typically associated with insulin resistance and dysfunction of insulin-secreting pancreatic beta-cells. Addressing these defects often requires therapy with a combination of differently acting antidiabetic agents. A potential novel combination in development brings together the dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin with the thiazolidinedione pioglitazone into a fixed-dose single-tablet combination. The former component acts mainly to increase prandial insulin secretion; the latter improves insulin sensitivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of obesity with type 2 diabetes increases morbidity and mortality from each condition. Excess adiposity accentuates insulin resistance and complicates the treatment of type 2 diabetes. Glucagon-like peptide 1 receptor agonists promote weight loss, whereas metformin, dipeptidyl peptidase 4 inhibitors, and a glucosidase inhibitors are typically weight neutral. The anabolic effects of increased insulin secretion and action restrict the benefits of treatment in obese patients. New treatments should ideally reduce hyperglycaemia and excess adiposity. Potential new treatments include analogues of intestinal and adipocyte hormones, inhibitors of renal glucose reabsorption and cellular glucocorticoid activation, and activators of cellular energy production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic systemic immunosuppression in cell replacement therapy restricts its clinical application. This study sought to explore the potential of cell-based immune modulation as an alternative to immunosuppressive drug therapy in the context of pancreatic islet transplantation. Human amniotic epithelial cells (AEC) possess innate anti-inflammatory and immunosuppressive properties that were utilized to create localized immune privilege in an in vitro islet cell culture system. Cellular constructs composed of human islets and AEC (islet/AEC) were bioengineered under defined rotational cell culture conditions. Insulin secretory capacity was validated by glucose challenge and immunomodulatory potential characterized using a peripheral blood lymphocyte (PBL) proliferation assay. Results were compared to control constructs composed of islets or AEC cultured alone. Studies employing AEC-conditioned medium examined the role of soluble factors, and fluorescence immunocytochemistry was used to identify putative mediators of the immunosuppressive response in isolated AEC monocultures. Sustained, physiologically appropriate insulin secretion was observed in both islets and islet/AEC constructs. Activation of resting PBL proliferation occurred on exposure to human islets alone but this response was significantly (p <0.05) attenuated by the presence of AEC and AEC-conditioned medium. Mitogen (phytohaemagglutinin, 5 µg/ml)-induced PBL proliferation was sustained on contact with isolated islets but abrogated by AEC, conditioned medium, and the islet/AEC constructs. Immunocytochemical analysis of AEC monocultures identified a subpopulation of cells that expressed the proapoptosis protein Fas ligand. This study demonstrates that human islet/AEC constructs exhibit localized immunosuppressive properties with no impairment of ß-cell function. The data suggest that transplanted islets may benefit from the immune privilege status conferred on them as a consequence of their close proximity to human AEC. Such an approach may reduce the need for chronic systemic immunosuppression, thus making islet transplantation a more attractive treatment option for the management of insulin-dependent diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Improved methods of insulin delivery are required for the treatment of insulin-dependent diabetes mellitus (IDDM) to achieve a more physiological profile of glucose homeostasis. Somatic cell gene therapy offers the prospect that insulin could be delivered by an autologous cell implant, engineered to secrete insulin in response to glucose. This study explores the feasibility of manipulating somatic cells to behave as a surrogate insulin-secreting β-cells. Initial studies were conducted using mouse pituitary AtT20 cells as a model, since these cells possess an endogenous complement of enzymes capable of processing proinsulin to mature insulin. Glucose sensitive insulin secretion was conferred to these cells by transfection with plasmids containing the human preproinsulin gene (hppI-1) and the GLUT2 gene for the glucose transporter isoform 2. Insulin secretion was responsive to changes in the glucose concentration up to about 50μM. Further studies to up-rate this glucose sensitivity into the mM range will require manipulation of the hexokinase and glucokinase enzymes. Intraperitoneal implantation of the manipulated AtT20 cells into athymic nude mice with streptozotocin-induced diabetes resulted in decreased plasma glucose concentrations. The cells formed vascularised tumours in vivo which were shown to contain insulin-secreting cells. To achieve proinsulin processing in non-endocrine cells, co-transfection with a suitable enzyme, or mutagenesis of the proinsulin itself are necessary. The mutation of the human preproinsulin gene to the consensus sequence for cleavage by the subtilisin-like serine protease, furin, was carried out. Co-transfection of human fibroblasts with wild-type proinsulin and furin resulted in 58% conversion to mature insulin by these cells. Intraperitoneal implantation of the mature-insulin secreting human fibroblasts into the diabetic nude mouse animal model gave less encouraging results than the AtT20 cells, apparently due to poor vascularisation. Cell aggregations removed from the mice at autopsy were shown to contain insulin secreting cells only at the periphery. This thesis provides evidence that it is possible to construct, by cellular engineering, a glucose-sensitive insulin-secreting surrogate β-cell. Therefore, somatic cell gene therapy offers a feasible alternative for insulin delivery in IDDM patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The overall aim of this study was to further understanding of themechanisms by which inhibitors of secretory activity mediate their action inisolated stomach cells. One objective was to determine whether a G-proteinsensitive to inactivation by pertussis toxin was involved in the action of thefollowing inhibitors of histamine-stimulated acid secretion: prostaglandin E2(PGE2), somatostatin, epidermal growth factor (EGF) and 12-0-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C.The site and mechanism by which EGF inhibited acid secretion and itseffects on pepsinogen secretion were also of interest. Further objectiveswere to determine whether TPA could induce down-regulation of proteinkinase C in parietal cells and to examine the inhibitory action of cyclic GMPon acid secretion. Acid secretion was estimated by the accumulation of theweak base aminopyrine in parietal cells. Experiments in which cells were preincubated with pertussis toxinindicated that PGE2, somatostatin and EGF mediated their inhibitory actionagainst histamine-stimulation via an inhibitory G-protein of the "Gi·like"family. Stimulation of PGE2 production by EGF also involved a pertussistoxin-sensitive G-protein. EGF inhibited acid secretion stimulated byforskolin, but only in the absence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). This action of EGF was sensitive toinactivation by pertussis toxin. It is suggested that the effect of EGF was dueto an increase in low Km cyclic AMP phosphodiesterase activity, rather thanan effect on the histamine (H2) receptor. EGF did not inhibit pepsinogensecretion. TPA exerted only a small part of its inhibitory action by a mechanismsensitive to pertussis toxin. TPA was unable to induce detectable down-regulationof protein kinase C. Acid secretion stimulated by near-maximallyeffective concentrations of h1stamme plus IBMX, dibutyryl cyclic AMP(dbcAMP) and K+ was inhibited by dibutyryl cyclic GMP (dbcGMP).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. Multiple low doses of streptozotocin (MSZ) treatment successfully induced diabetes in male TO, MFI and HO lean mice. In contrast however, BALB/c mice failed to develop persistent hyperglycaemia. Single streptozotocin (SSZ) treatment also produced diabetes in TO mice. SSZ treatment however, produced severe weight loss and atrophy of the lymphoid organs. MSZ treatment on the other hand, was not cytotoxic towards lymphoid organs and, whilst there was no loss of body weight, growth rates were reduced in MSZ treated mice. 2. Following sheep red blood cell (SRBC) immunisation of MSZ-treated mice, haemagglutination titres, and numbers of antigen reactive cells and plaque forming cells were all significantly lower than control values. 3. In vitro proliferation of spleen cells in response to phytohaemagglutinin (PHA) and conconavalin A (ConA) was found to be significantly depressed in MSZ treated mice. However, T-lymphocyte responses were intact when the mice were not overtly hyperglycaemic. In contrast, however, T cell independent responses to lipopolysaccharide (LPS) were generally intact throughout the study period. 4. Cell mediated immunity, as assessed by measurements of delayed (Type IV) hypersensitivity, was also depressed in MSZ treated mice. This suppression could be reversed by insulin therapy. 5. Both natural killer cell activity and antibody dependent cell mediated cytotoxicity were found to be significantly increased in MSZ treated mice. 6. Histological examination of the pancreas showed the presence of insulitis, in MSZ treated mice, and cytotoxic effector cells against obese mice islet cells (as assessed by 51Cr release) and HIT-T15 cells (as assessed by insulin secretion) were found to be significantly increased. Furthermore, these effector cells were also found to show increased proliferation in the presence of homogenates prepared from HIT-T15 cells. Examination of the Sera from MSZ treated mice showed that islet cell surface antibodies were present.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A variety of islet microencapsulation techniques have been investigated to establish which method provides the least occlusive barrier to net insulin release in vitro, and optimum biocompatibility for islet implantation in vivo. NMRI mouse islets have been microencapsulated with Na+ -alginate-poly-L-lysine (PLL)/poly-L-ornithine (PLO)-alginate, Ba2+ -alginate and agarose gels. Both free and microencapsulated islets responded to glucose challenge in static incubation and perifusion by significantly increasing their rate of insulin release and theophylline significantly potentiated the insulin response to glucose. While little insulin was released from microencapsulated islets after short term (2 hours) static incubation, significantly greater amounts were released in response to glucose challenge after extended (8-24 hours) incubation. However, insulin release from all types of microencapsulated islets was significantly reduced compared with free islets. Na+ -alginate-PLO-alginate microencapsulated islets were significantly more responsive to elevated glucose than Na+ -alginate-PLL-alginate microencapsulated islets, due to the enhanced porosity of PLO membranes. The outer alginate layer created a significant barrier to glucose/insulin exchange and reduced the insulin responsiveness of microencapsulated islets to glucose. Ba2+ -alginate membrane coated islets, generated by the density gradient method, were the most responsive to glucose challenge. Low concentrations of NG-monomethyl L-arginine (L-NMMA) had no significant effect on glucose stimulated insulin release from either free or microencapsulated islets. However, 1.0 mmol/1 L-NMMA significantly inhibited the insulin response of both free and microencapsulated islets to glucose challenge. In vivo work designed to evaluate the extent of pericapsular fibrosis after 28 days ip. and sc. implantation of microencapsulated islets into STZ-diabetic recipients, revealed that the inclusion of islets within microcapsules increased their immunogenicity and markedly increased the extent of pericapsular fibrosis. When the outer alginate layer was omitted from microcapsules, little or no pericapsular mononuclear cell deposition was observed. The subcutaneous site was not suitable for microencapsulated islet transplantation in NMRI recipient mice. Systemic immunosuppression using cyclosporin A was effective in preventing pericapsular mononuclear cell deposition, while L-NMMA loading into microcapsules had no significant effect on pericapsular fibrosis, although it did maintain the integrity of microencapsulated islets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Human islet transplantation would offer a less invasive and more physiological alternative than whole pancreas transplantation and insulin injections respectively for the treatment of diabetes mellitus if islet graft survival can be improved. Initial recipient post-transplant insulin independence declines to <10% after 5 years. Factors contributing to graft failure include enzymatic disruption of the islet microenvironment during isolation, diabetogenic effects of immunosuppressants and metabolic stress resulting from slow revascularisation. Aims: To investigate the effect of co-culture in both static (SC) and rotational culture (RC) of BRINBDII beta-cells (Dl1) and human umbilical vein endothelial cells (HUVEC) on Dl1 insulin secretion; and the effect of a thiazolidinedione (TZD) on DII function and HUVEC proliferation. To assess the effect of culture media, SC, RC and a TZD on human islet morphology, insulin secretion and VEGF production. To initiate in vivo protocol development for assessment of revascularisation of human islet grafts. Methods: D11 cells were cultured +/-TZD and co-cultured with HUVEC +/-TZD in SC and RC. Dl1 insulin secretion was induced by static incubation with low glucose (1.67mM), high glucose (l6.7mM: and high glucose with 10mM theophylline (G+T) and determined by ELISA. HUVEC were cultured +/-TZD in SC and RC and proliferation was assessed by ATP luminescence assay and VEGF ELISA. D II and HUVEC morphology was determined by immunocytochemistry. Human islets were cultured in SC and RC in various media +/-TZD. Insulin secretion was determined as above and VEGF production by fluorescence immunocytochemistry (FI) and ELISA. Revascularisation of islet grafts was assessed by vascular corrosion cast and FI. Results: Dll cultures showed significantly increased insulin secretion in response to 16.7mM and G+T over basal; this was enhanced by RC and further improved by adding 10mM TZD. Untreated Dll/HUVEC co-cultures displayed significantly increased insulin secretion in response to 16.7mM and G+T over basal, again enhanced by RC and improved with 10mM TZD. 10mM TZD significantly increased HUVEC proliferation over control. Human islets maintained in medium 199 (mI99) in SC and RC exhibited comparable maintenance of morphology and insulin secretory profiles compared to islets maintained in RPMI, endothelial growth media and dedicated islet medium Miami# I. All cultures showed significantly increased insulin secretion in response to 16.7mM and G+T over basal; this was enhanced by RC and in certain instances further improved by adding 25mM TZD. TZD increased VEGF production and release as determined by ELISA. Post-implant vascular corrosion casts of mouse kidneys analysed by x-ray micro tomography indicates a possible TZD enhancement of microvessel growth via VEGF upregulation. Conclusions: D II /HUVEC co-culture in SC or RC does not alter the morphology of either cell type and supports D 11 function. TZD improves 0 I I and D I I/HUVEC SC and RC co-culture insulin secretion while increasing HUVEC proliferation. Human islet RC supports islet functional viability and structural integrity compared to SC while the addition of TZD occasionally further improves secretagogue induced insulin secretion. Expensive, 'dedicated' islet media showed no advantage over ml99 in terms of maintaining islet morphology or function. TZD upregulates VEGF in islets as shown by ELISA and suggested by x-ray micro tomography analysis of vascular corrosion casts. Maintenance of islets in RC and treatment with TZD prior to transplant may improve the functional viability and revascularisation rate of islet grafts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Obesity is an established risk factor for type 2 diabetes. Activation of the adiponectin receptors has a clear role in improving insulin resistance although conflicting evidence exists for its effects on pancreatic beta-cells. Previous reports have identified both adiponectin receptors (ADR-1 and ADR-2) in the beta-cell. Recent evidence has suggested that two distinct regions of the adiponectin molecule, the globular domain and a small N-terminal region, have agonist properties. This study investigates the effects of two agonist regions of adiponectin on insulin secretion, gene expression, cell viability and cell signalling in the rat beta-cell line BRIN-BD11, as well as investigating the expression levels of adiponectin receptors (ADRs) in these cells. Cells were treated with globular adiponectin and adiponectin (15-36) +/-leptin to investigate cell viability, expression of key beta-cell genes and ERK1/2 activation. Both globular adiponectin and adiponectin (15-36) caused significant ERK1/2 dependent increases in cell viability. Leptin co-incubation attenuated adiponectin (15-36) but not globular adiponectin induced cell viability. Globular adiponectin, but not adiponectin (15-36), caused a significant 450% increase in PDX-1 expression and a 45% decrease in LPL expression. ADR-1 was expressed at a higher level than ADR-2, and ADR mRNA levels were differentially regulated by non-esterified fatty acids and peroxisome-proliferator-activated receptor agonists. These data provide evidence of roles for two distinct adiponectin agonist domains in the beta-cell and confirm the potentially important role of adiponectin receptor agonism in maintaining beta-cell mass.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laboratory-based research aimed at understanding processes regulating insulin secretion and mechanisms underlying ß-cell dysfunction and loss in diabetes often makes use of rodents, as these processes are in many respects similar between rats/mice and humans. Indeed, a rough calculation suggests that islets have been isolated from as many as 150,000 rodents to generate the data contained within papers published in 2009 and the first four months of 2010. Rodent use for islet isolation has been mitigated, to a certain extent, by the availability of a variety of insulin-secreting cell lines that are used by researchers world-wide. However, when maintained as monolayers the cell lines do not replicate the robust, sustained secretory responses of primary islets which limits their usefulness as islet surrogates. On the other hand, there have been several reports that configuration of MIN6 ß-cells, derived from a mouse insulinoma, as three-dimensional cell clusters termed ‘pseudoislets’ largely recapitulates the function of primary islet ß-cells. The Diabetes Research Group at King’s College London has been using the MIN6 pseudoislet model for over a decade and they hosted a symposium on “Pseudoislets as primary islet replacements for research”, which was funded by the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), in London on 15th and 16th April 2010. This small, focused meeting was conceived as an opportunity to consolidate information on experiences of working with pseudoislets between different UK labs, and to introduce the theory and practice of pseudoislet culture to laboratories working with islets and/or ß-cell lines but who do not currently use pseudoislets. This short review summarizes the background to the development of the cell line-derived pseudoislet model, the key messages arising from the symposium and emerging themes for future pseudoislet research.