950 resultados para SPRING-GIS
Resumo:
The role of snow depth of Tibetan Plateau in the onset of South China Sea summer monsoon and the influence of ENSO on snow depth of Tibetan Plateau are investigated with use of data from ECMWF reanalysis and NCEP/NCAR reanalysis. The results are as follows: (1) The snow depth data from ECMWF reanalysis are tested and reliable, and can be used to study the influence of snow depth of Tibetan Plateau on the onset of South China Sea summer monsoon; (2) Anomaly of snow depth of Tibetan Plateau causes anomaly in air temperature and its contrast between the Indian Ocean and the continent resulting in easterly wind anomaly over 500 hPa and hence as well as in the atmospheric circulation in the lower layer. For the year of negative anomaly of snow depth a westerly wind anomaly with a cyclone pair takes place, while for positive anomaly of snow depth an easterly anomaly occurs with an anticyclone pair; (3) While positive anomaly of SST occurs in the eastern Pacific Ocean, positive anomaly of air pressure also takes place over the eastern Indian Ocean and the South China Sea, causing stronger meridional pressure gradient between the ocean and continent and then westerly wind anomaly. At the same time, the atmospheric pressure increases in the northern Tibetan Plateau, northerly wind gets stronger, and subtropical front strengthens. All of these are favorable for snowfall over Tibetan Plateau.
Resumo:
黄河三角洲存在着不可忽视的地面沉降现象,并在一定程度上阻碍着三角洲的快速发展。对黄河三角洲地面沉降的研究在黄河三角洲防灾减灾、土地利用、河口河道治理等方面具有理论与实践指导意义。 本文收集了黄河三角洲地区1956年、1967年、1980年和1995年四个时期的1:5万地形图,提取高程信息,应用地理信息系统(GIS)软件生成数字高程模型并展开了相应的空间分析,得到各个时间段内黄河三角洲的地面沉降速率图,通过对各沉降速率图的统计分析得出了三角洲地区地面沉降的时空变化规律。文章继而分析了引发黄河三角洲地面沉降的三个主要诱导因子、它们在影响范围、作用时间、作用强度等方面的特点,以及在不同时间段内各诱导因子在引发地面沉降方面所发挥作用的主次。随后,在列举地面沉降对黄河三角洲产生的影响之后,归纳总结了防治地面沉降及其引发灾害的对策。最后,基于采用常规水准测量方法进行地面沉降监测费时费力,提出利用InSAR技术对黄河三角洲地面沉降进行监测的设想,并简要分析了其可行性。
Resumo:
Shipboard incubations were conducted in spring (April) and autumn (October/November) 2006 to measure the feeding and egg production rates (EPR) of Calanus sinicus in the Yellow Sea, China. The ingestion rate (2.08-11.46 and 0.26-3.70 mu g C female(-1) day(-1) in spring and autumn, respectively) was positively correlated with microplankton carbon concentrations. In the northern part of the Yellow Sea, feeding on microplankton easily covers the respiratory and production requirements, whereas in the southern part in spring and in the frontal zone in autumn, C. sinicus must ingest alternative food sources. Low ingestion rates, no egg production and the dominance of the fifth copepodite (CV) stage indicated that C. sinicus was in quiescence inside the Yellow Sea Cold Bottom Water (YSCBW) area in autumn. Calanus sinicus ingested ciliates preferentially over other components of the microplankton. The EPR (0.16-12.6 eggs female(-1) day(-1) in spring and 11.4 eggs female(-1) day(-1) at only one station in autumn) increased with ciliate standing stock. Gross growth efficiency (GGE) was 13.4% (3-39%) in spring, which was correlated with the proportion of ciliates in the diet. These results indicate that ciliates have higher nutrient quality than other food items, but the low GGE indicates that the diet of C. sinicus is nutritionally incomplete.
Resumo:
The North Atlantic spring bloom is one of the largest annual biological events in the ocean, and is characterized by dominance transitions from siliceous (diatoms) to calcareous (coccolithophores) algal groups. To study the effects of future global change on these phytoplankton and the biogeochemical cycles they mediate, a shipboard continuous culture experiment (Ecostat) was conducted in June 2005 during this transition period. Four treatments were examined: (1) 12 degrees C and 390 ppm CO2 (ambient control), (2) 12 degrees C and 690 ppm CO2 (high pCO(2)) (3) 16 degrees C and 390 ppm CO2 (high temperature), and (4) 16 degrees C and 690 ppm CO2 ('greenhouse'). Nutrient availability in all treatments was designed to reproduce the low silicate conditions typical of this late stage of the bloom. Both elevated pCO(2) and temperature resulted in changes in phytoplankton community structure. Increased temperature promoted whole community photosynthesis and particulate organic carbon (POC) production rates per unit chlorophyll a. Despite much higher coccolithophore abundance in the greenhouse treatment, particulate inorganic carbon production (calcification) was significantly decreased by the combination of increased pCO(2) and temperature. Our experiments suggest that future trends during the bloom could include greatly reduced export of calcium carbonate relative to POC, thus providing a potential negative feedback to atmospheric CO2 concentration. Other trends with potential climate feedback effects include decreased community biogenic silica to POC ratios at higher temperature. These shipboard experiments suggest the need to examine whether future pCO2 and temperature increases on longer decadal timescales will similarly alter the biological and biogeochemical dynamics of the North Atlantic spring bloom.
Resumo:
The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66 degrees N between 15 and 20 degrees W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chla concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved.
Resumo:
The fecundity, hatching success and naupliar survival of Calanus sinicus were studied in the Yellow Sea during research cruises in April and October 2006, with emphasis on the regulation of reproduction. During both cruises, the egg production rate (EPR) showed large spatial variations (0 to 25.4 eggs female(-1) d(-1)), generally coinciding with the food availability. In April, the abundant phytoplankton and ciliates in the study area supported active reproduction, which would probably initiate the annual population development. In October, females remained immature in the Yellow Sea Cold Water Mass, likely due to the unfavorable environment (poor food and low temperature). However, reproduction and recruitment were high in the neritic region, which may explain the local population recovery in late autumn. Hatching success varied markedly among stations in April (4 to 85%), whereas it was high overall in the neritic region during October (> 90%). Based on the potential recruitment rates, the spring recruitment would be more important for the annual population dynamics, Female gonad maturity, body size and lipid reserve were examined in relation to fecundity. Regression analyses suggested that the reproductive index (defined as the proportion of females with mature gonads) could be an indicator for the EPR of C. sinicus. Among the regulating factors, external food (ciliates and phytoplankton) seems essential for reproduction, whereas inner lipid reserve may mainly serve metabolic needs. Moreover, fecundity is positively related to body size but independent of temperature, which might exert indirect influences on reproduction.
Resumo:
Two field studies were conducted to measure pigments in the Southern Yellow Sea (SYS) and the northern East China Sea (NECS) in April (spring) and September (autumn) to evaluate the distribution pattern of phytoplankton stock (Chl a concentration) and the impact of hydrological features such as water mass, mixing and tidal front on these patterns. The results indicated that the Chl a concentration was 2.43 +/- 2.64 (Mean +/- SD) mg m(-3) in April (range, 0.35 to 17.02 mg m(-3)) and 1.75 +/- 3.10 mg m(-3) in September (from 0.07 to 36.54 mg m(-3)) in 2003. Additionally, four areas with higher Chl a concentrations were observed in the surface water in April, while two were observed in September, and these areas were located within or near the point at which different water masses converged (temperature front area). The distribution pattern of Chl a was generally consistent between onshore and offshore stations at different depths in April and September. Specifically, higher Chl a concentrations were observed along the coastal line in September, which consisted of a mixing area and a tidal front area, although the distributional pattern of Chl a concentrations varied along transects in April. The maximum Chl a concentration at each station was observed in the surface and subsurface layer (0-10 m) for onshore stations and the thermocline layer (10-30 m) for offshore stations in September, while the greatest concentrations were generally observed in surface and subsurface water (0-10 m) in April. The formation of the Chl a distributional pattern in the SYS and NECS and its relationship with possible influencing factors is also discussed. Although physical forces had a close relationship with Chl a distribution, more data are required to clearly and comprehensively elucidate the spatial pattern dynamics of Chl a in the SYS and NECS.
Resumo:
Dilution experiments were performed to examine the growth rate and grazing mortality rate of size-fractionated phytoplankton at three typical stations, inside and outside the bay, in the spring and summer of 2003 in the Jiaozhou Bay, China. in spring, the phytoplankton community structure was similar among the three stations, and was mainly composed of nanophytoplankton, such as, Skeletonema costatum and Cylindrotheca closterium. The structure became significantly different for the three stations in summer, when the dominant species at Stas A, B and C were Chaetoceros curvisetus, Pseudo-nitzschia delicatissima, C. affinis, C. debilis, Coscinodiscus oculus-iridis and Paralia sulcata respectively. Tintinnopsis beroidea and T. tsingtaoensis were the dominant species in spring, whereas the microzooplankton was apparently dominated by Strombidium sp. in summer. Pico- and nanophytoplankton had a relatively greater growth rate than microzooplankton both in spring and summer. The growth rate and grazing mortality rate were 0.18 similar to 0.44 and 0.12 similar to 1.47 d(-1) for the total phytoplankton and 0.20 similar to 0.55 and 0.21 similar to 0.37 d-1 for nanophytoplankton in spring respectively. In summer, the growth rate and grazing mortality rate were 0.38 similar to 0.71 and 0.27 similar to 0.60 d-1 for the total phytoplankton and 0.11 similar to 1.18 and 0.41 similar to 0.72 d(-1) for nano- and microphytoplankton respectively. The carbon flux consumed by microzooplankton per day was 7.68 similar to 39.81 mg/m(3) in spring and 12.03 similar to 138.22 mg/m(3) in summer respectively. Microzooplankton ingested 17.56%similar to 92.19% of the phytoplankton standing stocks and 31.77%similar to 467.88% of the potential primary productivity in spring; in contrast, they ingested 34.60%similar to 83.04% of the phytoplankton standing stocks and 71.28%similar to 98.80% of the potential primary productivity in summer. Pico- and nanophytoplankton appeared to have relatively greater rates of growth and grazing mortality than microphytoplankton during the experimental period. The grazing rate of microzooplankton in summer was a little bit greater than that in spring because of the relatively higher incubation temperature and different dominant microzooplankton species. Microzooplankton preferred ingesting nanophytoplankton to microphytoplankton in spring, while they preferred ingesting picophytoplankton to nanophytoplankton and microphytoplankton in summer. Compared with the results of dilution experiments performed in various waters worldwide, the results are in the middle range.
Resumo:
The development of the phytoplankton community was studied in the Jiaozhou Bay during the spring to neap tide in August 2001, through three cruises and a 15 d continuous observation. This investigation indicates that diatom cell abundance increased sharply following the end of a spring tide, from 9 cells/cm(3) to a peak of 94 cells/cm(3). The dominant species composition and abundance show a quick species sequence from spring to neap tide, and the dominant species at the start phase is Skeletomena costatum, then changes to Chaetoceros curvisetus, finally it changes to Eucampia zodiacus. Silicate concentration increases during spring tide, as a result of nutrient replenishment from the water-sediment interface, its initial average concentration in neap tide is 1.39 mumol/dm(3) and reached the peak average concentration of 8.40 mumol/dm(3) in spring tide. But the nitrogen concentration dropped due to dilution by the low nitrogen seawater from the Huanghai Sea, its initial average concentration in neap tide is 67 mumol/dm(3) and decreased to the average concentration of 54 mumol/dm(3) in spring tide. The degree of silicon limitation was decreased and phytoplankton, especially diatoms, responds immediately after nutrient replenishment in the water column. Skeletonmea costatum, as one of the dominant species in the Jiaozhou Bay, shows a quicker response to nutrient availability than Eucampia zodiacus and Chaetoceros curvisetus. It is proposed that dominant species composition and water column stability synchronously determine the development of phytoplankton summer blooms in the Raozhou bay.
Resumo:
N isotope fractionation (epsilon) was first determined during ambient NO3- depletion in a simulated diatom spring bloom. After 48 h of N-starvation, NH4+ was resupplied to the diatoms in small pulses to simulate grazer-produced N and then epsilon was determined. Large variations in epsilon values were observed: from 2.0-3.6 to 14-0 parts per thousand during NO3- and NH4+ uptake, respectively. This is the first study reporting an epsilon value as low as 0 to 2 parts per thousand for NH4+ uptake and we suggest that greater N demand after N-starvation may have drastically reduced NH3 efflux out of the cells. Thus the N status of the phytoplankton and not the ambient NH4+ concentration may be the important factor controlling epsilon, because, when N-starvation increased, epsilon values for NH4+ uptake decreased within 30 h. This study may thus have important implications for interpreting the delta(15)N of particulate N in nutrient-depleted regimes in temperate coastal oceans.
Resumo:
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (< 2 mu m), nanophytoplankton (2-20 mu m), and microphytoplankton (> 20 mu m) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13-3.43 and 0.09-1.92 d(-1) for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 mu g C 1(-1) d(-1) at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive.
Resumo:
Pigment ingestion rate (PIR) and egg production rate (EPR) of the dominant copepod Calanus sinicus, as well as chlorophyll-a concentration and phytoplankton assemblages were measured in the Bohai Sea, North China in June 1997, October 1998 and May 1999. A herbivore index (H) was also calculated as the carbon specific ratio of PIR and EPR, in order to investigate its feeding habits in the spring and autumn phytoplankton bloom respectively. On average, chlorophyll-a concentration was relatively similar (1-1.34 mg m(-3)) in the three cruises, but PIR was quite different. It was 3.24 mu g C female(-1) d(-1) in October, equivalent to one half of the PIR for June and one third of the PIR for May. Average EPR was highest in May, and quite similar during the other two months. According to H values, herbivorous feeding contributed 100% of the egg production of C. sinicus in June, 82.5% in May, but only 47.8% in October. It is possible that omnivorous feeding of C. sinicus in October was induced by a prevalence of large-sized diatoms and sufficient non-phytoplankton food resources during the autumn bloom period.
Resumo:
A three-dimensional (3-D) coupled physical and biological model was used to investigate the physical processes and their influence on the ecosystem dynamics of the Bohai Sea of China. The physical processes include M-2 tide, time - varying wind forcing and river discharge. Wind records from I to 31 May in 1993 were selected to force the model. The biological model is based on a simple, nitrate and phosphate limited, lower trophic food web system. The simulated results showed that variation of residual currents forced by M, tide, river discharge and time-varying wind had great impact on the distribution of phytoplankton biomass in the Laizhou Bay. High phytoplankton biomass appeared in the upwelling region. Numerical experiments based on the barotropic model and baroclinic model with no wind and water discharge were also conducted. Differences in the results by the baroclinic model and the barotropic model were significant: more patches appeared in the baroclinic model comparing with the barotropic model. And in the baroclinic model, the subsurface maximum phytoplankton biomass patches formed in the stratified water.