992 resultados para SPME-GC-FID
Resumo:
Os produtos provenientes do mar têm um importante papel a nível socioeconómico, gastronómico e no legado cultural das comunidades piscatórias e costeiras de Portugal. O Percebe Pollicipes pollicipes é na Península Ibérica o recurso biológico do intertidal mais explorado pelo ser humano, devido à sua enorme popularidade e consequente procura, fazendo em algumas ocasiões disparar o preço de mercado até 150€/kg, gerando na sobreexploração dos stocks existentes. No entanto, na área marinha protegida da Reserva Natural da Berlenga, a apanha do percebe é fortemente regulada, tendo-se tornado em Portugal num bom exemplo da gestão de recursos marinhos. Com o intuito de prevenir fraudes, adulteração alimentar ou quaisquer outras práticas que possam induzir o consumidor em erro a Comissão Europeia declara que, o consumidor tem o direito de receber informação correcta acerca dos produtos que adquire, para além de definir regras para a correcta aplicação destas regras. Métodos analíticos que possibilitem identificar a origem do percebe, tornam-se deste modo importantes ferramantas no desenvolvimento de um selo de Denominação de Origem Protegida (DOP) e na gestão comercial do produto. Deste modo, investigou-se se o Percebe possui diferenças específicas de cada local de captura, através da forma da unha (CS), da composição microquímica da unha (EM) e do perfil de ácidos gordos (FA). A análise foi efectuada em indivíduos recolhidos em 3 locais na Reserva Natural das Berlengas e 7 ao longo de 300 km da costa Portuguesa. Em cada indivíduo analisou-se a forma da unha (CS) através da morfometria geométrica, a composição microquímica da unha (EM) através de ICP-MS e o perfil de ácidos gordos do músculo através de GC-FID. A análise das funções discriminantes (DFA) quer para a EM quer para a FA em separado obteve um elevado sucesso de reclassificação (77,6 % e 99% respectivamente, através de validação cruzada), enquanto que EM combinado com FA permitiu um sucesso de reclassificação de 100 %. A análise discriminante baseada apenas na CS, demonstrou um baixo sucesso (29,6 %) .Estes resultados demonstram que a composição microquímica da unha e o perfil de ácidos gordos do músculo de Percebe, poderá ser uma ferramenta de elevada importância, na determinação da origem do Percebe. Esta abordagem poderá ser utilizada para identificar a origem dos percebes comercializados, bem como ajudar no desenvolvimento de um selo DOP, aumentando ao mesmo tempo o valor potencial dos recursos biológicos provenientes de áreas marinhas protegidas em Portugal.
Resumo:
In certain European countries and the United States of America, canines have been successfully used in human scent identification. There is however, limited scientific knowledge on the composition of human scent and the detection mechanism that produces an alert from canines. This lack of information has resulted in successful legal challenges to human scent evidence in the courts of law. The main objective of this research was to utilize science to validate the current practices of using human scent evidence in criminal cases. The goals of this study were to utilize Headspace Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (HS-SPME-GC/MS) to determine the optimum collection and storage conditions for human scent samples, to investigate whether the amount of DNA deposited upon contact with an object affects the alerts produced by human scent identification canines, and to create a prototype pseudo human scent which could be used for training purposes. Hand odor samples which were collected on different sorbent materials and exposed to various environmental conditions showed that human scent samples should be stored without prolonged exposure to UVA/UVB light to allow minimal changes to the overall scent profile. Various methods of collecting human scent from objects were also investigated and it was determined that passive collection methods yields ten times more VOCs by mass than active collection methods. Through the use of polymerase chain reaction (PCR) no correlation was found between the amount of DNA that was deposited upon contact with an object and the alerts that were produced by human scent identification canines. Preliminary studies conducted to create a prototype pseudo human scent showed that it is possible to produce fractions of a human scent sample which can be presented to the canines to determine whether specific fractions or the entire sample is needed to produce alerts by the human scent identification canines.
Resumo:
The tight coupling between the atmospheric and oceanic circulation in the equatorial Atlantic region makes this area an important region for paleoclimatic research. Previous studies report the occurrence of large amounts of terrigenous material and soil organic carbon (SOC) within the marine sediments of the eastern Gulf of Guinea. We use the accumulation rates (AR) of branched glycerol dialkyl glycerol tetraethers (GDGTs) to identify variations in SOC delivery to the Niger Fan over the last 35 ka, and compare these records to long-chain n-alkanes as a proxy for higher plant material, to an inorganic proxy for terrigenous input (aluminum AR) and to indicators for the marine productivity (AR of carbonate and crenarchaeol). In addition, sea surface temperatures (SSTs) are calculated based on the TEX86H index and environmental factors affecting the SST-reconstructions are discussed. Our results indicate that Al AR are closely connected to the rate of mean sea level change after 15 ka BP, with an additional influence of the increased monsoonal precipitation and extended vegetation cover corresponding to the African Humid Period (14.8-5.5 ka BP). Branched GDGT AR appears to be determined by shelf erosion in addition to the interplay of monsoonal precipitation and vegetation cover controlling soil erosion. Long-chain n-alkane concentrations clearly show a different trend than the other proxies, which might be due to their predominant eolian transport. Paleo-SSTs show a clear shift from colder temperatures during the last glacial period (20-22 °C) to warmer temperatures during the Holocene (24-26 °C). However, TEX86H-based SSTs are cold-biased compared to recent SSTs and Mg/Ca-based SST reconstructions, which is probably caused by a high seasonality of the Thaumarchaeota, with a maximum productivity of these organisms during the cold summer months. However, a sub-surface production of GDGTs and/or a potential bias of SST reconstruction by terrestrial input could not be completely excluded.
Resumo:
In an investigation of gas hydrates in deep ocean sediments, gas samples from Deep Sea Drilling Project Site 533 on the Blake Outer Ridge in the northwest Atlantic were obtained for molecular and isotopic analyses. Gas samples were collected from the first successful deployment of a pressure core barrel (PCB) in a hydrate region. The pressure decline curves from two of the four PCB retrievals at in situ pressures suggested the presence of small amounts of gas hydrates. Compositional and isotopic measurements of gases from several points along the pressure decline curve indicated that (1) biogenic methane (d13C = -68 per mil; C1/C2 = 5000) was the dominant gas (>90%); (2) little fractionation in the C1/C2 ratio or the C carbon isotopic composition occurred as gas hydrates decomposed during pressure decline experiments; (3) the percent of C3, i-C4, and CO2 degassed increased as the pressure declined, indicating that these molecules may help stabilize the hydrate structure; (4) excess nitrogen was present during initial degassing; and (5) C1/C2 ratios and isotopic ratios of C gases were similar to those obtained from conventional core sampling. The PCB gas also contained trace amounts of saturated, acyclic, cyclic, and aromatic C5-C14 hydrocarbons, as well as alkenes and tetrahydrothiophenes. Gas from a decomposed specimen of gas hydrate had similar molecular and isotopic ratios to the PCB gas (d13C of -68 per mil for methane and a C1/C2 ratio of about 6000). Regular trends in the d13C of methane (about -95 to -60 per mil) and C1/C2 ratios (about 25000 to 2000) were observed with depth. Capillary gas chromatography (GC) and total scanning fluorescence measurements of extracted organic material were characteristic of hydrocarbons dominated by a marine source, though significant amounts of perylene were also present.
Resumo:
The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates "from above". As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to have persisted for a considerably longer time at the Worm Hole site, amounting to a few tens of thousands of years.
Resumo:
Trees and shrubs in tropical Africa use the C3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C27 to n-C33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane d13C values are often used to reconstruct past C3/C4 composition of vegetation, assuming that the relative proportions of C3 and C4 leaf waxes reflect the relative proportions of C3 and C4 plants. We have compared the d13C values of n-alkanes from modern C3 and C4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C3 vegetation cover (fC3) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C3-dominated rain forest by C4-dominated savanna. The C3 plants analysed were characterised by substantially higher abundances of n-C29 alkanes and by substantially lower abundances of n-C33 alkanes than the C4 plants. Furthermore, the sedimentary d13C values of n-C29 and n-C31 alkanes from recent lake sediments in Cameroon (-37.4 per mil to -26.5 per mil) were generally within the range of d13C values for C3 plants, even when from sites where C4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C3 and C4 vegetation cover when using the d13C values of sedimentary n-alkanes, overestimating the proportion of C3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C3 and C4 plants. We therefore tested a set of non-linear binary mixing models using d13C values from both C3 and C4 vegetation as end-members. The non-linear models included a sigmoid function (sine-squared) that describes small variations in the fC3 values as the minimum and maximum d13C values are approached, and a hyperbolic function that takes into account the differences between C3 and C4 plants discussed above. Model fitting and the estimation of uncertainties were completed using the Monte Carlo algorithm and can be improved by future data addition. Models that provided the best fit with the observed d13C values of sedimentary n-alkanes were either hyperbolic functions or a combination of hyperbolic and sine-squared functions. Such non-linear models may be used to convert d13C measurements on sedimentary n-alkanes directly into reconstructions of C3 vegetation cover.
Resumo:
Abstract of paper will be inserted here...
Resumo:
Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR (Q-PCR)-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and archaea were specifically higher around the peak of dissolved iron in the methanic zone (250-350 cm. The higher copy numbers at these depths were also reflected by the relative sequence abundances of members of the candidate division JS1, methanogenic and Methanohalobium/ANME-3 related archaea. The distribution of these populations was strongly correlated to the profile of pore-water Fe2+ while that of Desulfobacteraceae corresponded to the pore-water sulfate profile. Furthermore, specific JS1 populations also strongly co-varied with the distribution of Methanosaetaceae in the methanic zone. Our data suggest that the interplay among JS1 bacteria, methanogenic archaea and Methanohalobium/ANME-3-related archaea may be important for iron reduction and methane cycling in deep methanic sediments of the Helgoland mud area and perhaps in other methane-rich depositional environments. .