969 resultados para SEMANTICS
TV-toimittajan kolmannen position vuoroista Venäjän televisiossa: dialogipartikkelit ja interventiot
Resumo:
We search for b to s\mu^+\mu^- transitions in B meson (B^+, B^0, or B^0_s) decays with 924pb^{-1} of p pbar collisions at sqrt(s)=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We find excesses with significances of 4.5, 2.9, and 2.4 standard deviations in the B^+ to \mu^+\mu^-K^+, B^0 to \mu^+\mu^-K^*(892)^0, and B_s^0 to \mu^+\mu^-\phi decay modes, respectively. Using B to J/psi h (h = K^+, K^*(892)^0, phi) decays as normalization channels, we report branching fractions for the previously observed B^+ and B^0 decays, BR(B^+ to \mu^+\mu^-K^+)=(0.59\pm0.15\pm0.04) x 10^{-6}, and BR(B^0 to \mu^+\mu^-K^*(892)^0)=(0.81\pm0.30\pm0.10) x 10^{-6}, where the first uncertainty is statistical, and the second is systematic. These measurements are consistent with the world average results, and are competitive with the best available measurements. We set an upper limit on the relative branching fraction BR(B_s^0 to \mu^+\mu^-\phi)/BR(B_s^0 to J/\psi\phi)
Resumo:
A key trait of Free and Open Source Software (FOSS) development is its distributed nature. Nevertheless, two project-level operations, the fork and the merge of program code, are among the least well understood events in the lifespan of a FOSS project. Some projects have explicitly adopted these operations as the primary means of concurrent development. In this study, we examine the effect of highly distributed software development, is found in the Linux kernel project, on collection and modelling of software development data. We find that distributed development calls for sophisticated temporal modelling techniques where several versions of the source code tree can exist at once. Attention must be turned towards the methods of quality assurance and peer review that projects employ to manage these parallel source trees. Our analysis indicates that two new metrics, fork rate and merge rate, could be useful for determining the role of distributed version control systems in FOSS projects. The study presents a preliminary data set consisting of version control and mailing list data.
Resumo:
The cross section for jets from b quarks produced with a W boson has been measured in ppbar collision data from 1.9/fb of integrated luminosity recorded by the CDF II detector at the Tevatron. The W+b-jets process poses a significant background in measurements of top quark production and prominent searches for the Higgs boson. We measure a b-jet cross section of 2.74 +- 0.27(stat.) +- 0.42(syst.) pb in association with a single flavor of leptonic W boson decay over a limited kinematic phase space. This measured result cannot be accommodated in several available theoretical predictions.
Resumo:
We present a measurement of the top-quark width using $t\bar{t}$ events produced in $p\bar{p}$ collisions at Fermilab's Tevatron collider and collected by the CDF II detector. In the mode where the top quark decays to a $W$ boson and a bottom quark, we select events in which one $W$ decays leptonically and the other hadronically~(lepton + jets channel) . From a data sample corresponding to 4.3~fb$^{-1}$ of integrated luminosity, we identify 756 candidate events. The top-quark mass and the mass of $W$ boson that decays hadronically are reconstructed for each event and compared with templates of different top-quark widths~($\Gamma_t$) and deviations from nominal jet energy scale~($\Delta_{JES}$) to perform a simultaneous fit for both parameters, where $\Delta_{JES}$ is used for the {\it in situ} calibration of the jet energy scale. By applying a Feldman-Cousins approach, we establish an upper limit at 95$\%$ confidence level~(CL) of $\Gamma_t $
Resumo:
We report measurements of the polarization of W bosons from top-quark decays using 2.7 fb^-1 of ppbar collisions collected by the CDF II detector. Assuming a top-quark mass of 175 GeV/c^2, three measurements are performed. A simultaneous measurement of the fraction of longitudinal (f_0) and right-handed (f_+) W bosons yields the model-independent results f_0 = 0.88 \pm 0.11 (stat) \pm 0.06 (syst) and f_+ = -0.15 \pm 0.07 (stat) \pm 0.06 (syst) with a correlation coefficient of -0.59. A measurement of f_0 (f_+) constraining f_+ (f_0) to its standard model value of 0.0 (0.7) yields f_0 = 0.70 \pm 0.07 (stat) \pm 0.04 (syst) (f_+ = -0.01 \pm 0.02 (stat) \pm 0.05 (syst)). All these results are consistent with standard model expectations.
Resumo:
We report two complementary measurements of the WW+WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using p\bar{p} collision data at sqrt{s} = 1.96 TeV collected by the CDF II detector. The first method uses the dijet invariant mass distribution while the second more sensitive method uses matrix-element calculations. The result from the second method has a signal significance of 5.4 sigma and is the first observation of WW+WZ production using this signature. Combining the results gives sigma_{WW+WZ} = 16.0 +/- 3.3 pb, in agreement with the standard model prediction.
Resumo:
A measurement of the $\ttbar$ production cross section in $\ppbar$ collisions at $\sqrt{{\rm s}}$ = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb$^{-1}$ is: $\sigma_{\ttbar}$ = 6.27 $\pm$ 0.73(stat) $\pm$ 0.63(syst) $\pm$ 0.39(lum) pb. for an assumed top mass of 175 GeV/$c^{2}$.
Resumo:
We present measurements of the top quark mass using the \mT2, a variable related to the transverse mass in events with two missing particles. We use the template method applied to t\tbar dilepton events produced in p\pbar collisions at Fermilab's Tevatron and collected by the CDF detector. From a data sample corresponding to an integrated luminosity of 3.4 \invfb, we select 236 t\tbar candidate events. Using the \mT2 distribution, we measure the top quark mass to be M_{Top} = 168.0^{+4.8}_{-4.0} $\pm$ {2.9} GeV/c^{2}. By combining the \mT2 with the reconstructed top mass distributions based on a neutrino weighting method, we measure M_{top}=169.3 $\pm$ 2.7 $\pm$ 3.2 GeV/c^{2}. This is the first application of the \mT2 variable in a mass measurement at a hadron collider.
Resumo:
We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.
Resumo:
We report on a search for direct scalar bottom quark (sbottom) pair production in $p \bar{p}$ collisions at $\sqrt{s}=1.96$~TeV, in events with large missing transverse energy and two jets of hadrons in the final state, where at least one of the jets is required to be identified as originating from a $b$ quark. The study uses a CDF Run~II data sample corresponding to 2.65~fb${}^{-1}$ of integrated luminosity. The data are in agreement with the standard model. In an R-parity conserving minimal supersymmetric scenario, and assuming that the sbottom decays exclusively into a bottom quark and a neutralino, 95$\%$ confidence-level upper limits on the sbottom pair production cross section of 0.1~pb are obtained. For neutralino masses below 70~GeV/$c^2$, sbottom masses up to 230~GeV/$c^2$ are excluded at 95$\%$ confidence level.