857 resultados para Rubber, Artificial.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.
Resumo:
Abstract:Two ultrasound based fertility prediction methods were tested prior to embryo transfer (ET) and artificial insemination (AI) in cattle. Female bovines were submitted to estrous synchronization prior to ET and AI. Animals were scanned immediately before ET and AI procedure to target follicle and corpus luteum (CL) size and vascularity. In addition, inseminated animals were also scanned eleven days after insemination to target CL size and vascularity. All data was compared with fertility by using gestational diagnosis 35 days after ovulation. Prior to ET, CL vascularity showed a positive correlation with fertility, and no pregnancy occurred in animals with less than 40% of CL vascularity. Prior to AI and also eleven days after AI, no relationship with fertility was seen in all parameters analyzed (follicle and CL size and vascularity), and contrary, cows with CL vascularity greater than 70% exhibit lower fertility. In inseminated animals, follicle size and vascularity was positive related with CL size and vascularity, as shown by the presence of greater CL size and vascularity originated from follicle with also greater size and vascularity. This is the first time that ultrasound based fertility prediction methods were tested prior to ET and AI and showed an application in ET, but not in AI programs. Further studies are needed including hormone profile evaluation to improve conclusion.
Resumo:
Ceramides comprise a class of sphingolipids that exist only in small amounts in cellular membranes, but which have been associated with important roles in cellular signaling processes. The influences that ceramides have on the physical properties of bilayer membranes reach from altered thermodynamical behavior to significant impacts on the molecular order and lateral distribution of membrane lipids. Along with the idea that the membrane physical state could influence the physiological state of a cell, the membrane properties of ceramides have gained increasing interest. Therefore, membrane phenomena related to ceramides have become a subject of intense study both in cellular as well as in artificial membranes. Artificial bilayers, the so called model membranes, are substantially simpler in terms of contents and spatio-temporal variation than actual cellular membranes, and can be used to give detailed information about the properties of individual lipid species in different environments. This thesis focuses on investigating how the different parts of the ceramide molecule, i.e., the N-linked acyl chain, the long-chain sphingoid base and the membrane-water interface region, govern the interactions and lateral distribution of these lipids in bilayer membranes. With the emphasis on ceramide/sphingomyelin(SM)-interactions, the relevance of the size of the SMhead group for the interaction was also studied. Ceramides with methylbranched N-linked acyl chains, varying length sphingoid bases, or methylated 2N (amide-nitrogen) and 3O (C3-hydroxyl) at the interface region, as well as SMs with decreased head group size, were synthesized and their bilayer properties studied by calorimetric and fluorescence spectroscopic techniques. In brief, the results showed that the packing of the ceramide acyl chains was more sensitive to methyl-branching in the mid part than in the distal end of the N-linked chain, and that disrupting the interfacial structure at the amide-nitrogen, as opposed to the C3-hydroxyl, had greater effect on the interlipid interactions of ceramides. Interestingly, it appeared that the bilayer properties of ceramides could be more sensitive to small alterations in the length of the long-chain base than what was previously reported for the N-linked acyl chain. Furthermore, the data indicated that the SM-head group does not strongly influence the interactions between SMs and ceramides. The results in this thesis illustrate the pivotal role of some essential parts of the ceramide molecules in determining their bilayer properties. The thesis provides increased understanding of the molecular aspects of ceramides that possibly affect their functions in biological membranes, and could relate to distinct effects on cell physiology.
Resumo:
In this master’s thesis, wind speeds and directions were modeled with the aim of developing suitable models for hourly, daily, weekly and monthly forecasting. Artificial Neural Networks implemented in MATLAB software were used to perform the forecasts. Three main types of artificial neural network were built, namely: Feed forward neural networks, Jordan Elman neural networks and Cascade forward neural networks. Four sub models of each of these neural networks were also built, corresponding to the four forecast horizons, for both wind speeds and directions. A single neural network topology was used for each of the forecast horizons, regardless of the model type. All the models were then trained with real data of wind speeds and directions collected over a period of two years in the municipal region of Puumala in Finland. Only 70% of the data was used for training, validation and testing of the models, while the second last 15% of the data was presented to the trained models for verification. The model outputs were then compared to the last 15% of the original data, by measuring the mean square errors and sum square errors between them. Based on the results, the feed forward networks returned the lowest generalization errors for hourly, weekly and monthly forecasts of wind speeds; Jordan Elman networks returned the lowest errors when used for forecasting of daily wind speeds. Cascade forward networks gave the lowest errors when used for forecasting daily, weekly and monthly wind directions; Jordan Elman networks returned the lowest errors when used for hourly forecasting. The errors were relatively low during training of the models, but shot up upon simulation with new inputs. In addition, a combination of hyperbolic tangent transfer functions for both hidden and output layers returned better results compared to other combinations of transfer functions. In general, wind speeds were more predictable as compared to wind directions, opening up opportunities for further research into building better models for wind direction forecasting.
Resumo:
Ribonucleic acid (RNA) has many biological roles in cells: it takes part in coding, decoding, regulating and expressing of the genes as well as has the capacity to work as a catalyst in numerous biological reactions. These qualities make RNA an interesting object of various studies. Development of useful tools with which to investigate RNA is a prerequisite for more advanced research in the field. One of such tools may be the artificial ribonucleases, which are oligonucleotide conjugates that sequence-selectively cleave complementary RNA targets. This thesis is aimed at developing new efficient metal-ion-based artificial ribonucleases. On one hand, to solve the challenges related to solid-supported synthesis of metal-ion-binding conjugates of oligonucleotides, and on the other hand, to quantify their ability to cleave various oligoribonucleotide targets in a pre-designed sequence selective manner. In this study several artificial ribonucleases based on cleaving capability of metal ion chelated azacrown moiety were designed and synthesized successfully. The most efficient ribonucleases were the ones with two azacrowns close to the 3´- end of the oligonucleotide strand. Different transition metal ions were introduced into the azacrown moiety and among them, the Zn2+ ion was found to be better than Cu2+ and Ni2+ ions.
Resumo:
O presente estudo tem como objetivo conhecer a composição do fitoplâncton no Lago das Tartarugas, situado no Jardim Botânico da cidade de Porto Alegre, Estado do Rio Grande do Sul. As amostragens foram realizadas mensalmente, no período de junho de 2007 a maio de 2008, em uma estação em três diferentes níveis de profundidade, na zona pelágica. Um total de 49 táxons específicos e infraespecíficos pertencentes a sete classes foram registrados. Cyanobacteria apresentou maior número de táxons (35% dos táxons identificados) seguida de Bacillariophyceae (33%) e Euglenophyceae (16,3%). São apresentadas descrições, medidas e ilustrações dos táxons, assim como a distribuição dos mesmos durante o ciclo anual.
Resumo:
Os criatórios de peixe do estado de Goiás são inúmeros e de intensa atividade recreativa. No entanto, estudos sobre as cianobactérias nesses ambientes são escassos, fato preocupante, uma vez que é comum notar-se intensa proliferação do fitoplâncton em pesqueiros, principalmente devido a ações antrópicas. O perigo consiste na formação de florações de espécies potencialmente tóxicas, principalmente de cianobactérias. Este trabalho visa inventariar as espécies planctônicas de cianobactérias ocorrentes em um pesqueiro (lago Jaó - um lago artificial raso) da área municipal de Goiânia (GO) (16º39'13" S-49º13'26" O). As amostragens foram realizadas nos períodos de seca (2003 a 2008) e chuva (2009), quando visualmente era evidente a ocorrência de florações. Foram aferidas variáveis climatológicas, morfométricas e limnológicas. O período de seca foi representativo nos anos amostrados apresentando no máximo 50 mm de precipitação mensal em 2005. Foram registrados 31 táxons de cianobactérias pertencentes aos gêneros Dolichospermum (5 spp.), Aphanocapsa (4 spp.), Microcystis (3 spp.), Pseudanabaena (3 spp.), Radiocystis (2 spp.), Oscillatoria (2 spp.), Bacularia, Coelosphaerium, Cylindrospermopsis, Geitlerinema, Glaucospira, Limnothrix, Pannus, Phormidium, Planktolyngbya, Planktothrix, Sphaerocavum e Synechocystis, esses últimos com uma espécie cada. Nos anos de 2003 a 2005 ocorreu predomínio de florações de espécies de Dolichospermum e em 2006 predominaram espécies de Microcystis, Radiocystis e Aphanocapsa. Das espécies inventariadas neste estudo, 21 são primeiras citações para o estado de Goiás e 13 foram constadas na literatura como potencialmente tóxicas.
Resumo:
Induced mutations by gamma radiation (0, 5, 10, 20 and 40 kR doses) and reciprocal crosses were tested as mechanisms of enhancing genetic variability for plant height in two triticale cultivars, BR4 and EMBRAPA18. The reciprocal crosses and all doses of radiation showed similar increase in genetic amplitude for this trait, being suitable for increasing variability in breeding programs. Genotypes showed different responses as the gamma ray doses were increased, expressing shorter plant height. The decision of using induced mutations or artificial crosses depends on the resources available and the selection method to be used
Resumo:
The ideal therapy for early stages of hemorrhoids is always debated. Some are more effective but are more painful, others are less painful but their efficacy is also lower. Thus, comfort or efficacy is a major concern. In the present randomized study, a comparison is made between infrared coagulation and rubber band ligation in terms of effectiveness and discomfort. One hundred patients with second degree bleeding piles were randomized prospectively to either rubber band ligation (N = 54) or infrared coagulation (N = 46). Parameters measured included postoperative discomfort and pain, time to return to work, relief in incidence of bleeding, and recurrence rate. The mean age was 38 years (range 19-68 years). The mean duration of disease was 17.5 months (range 12 to 34 months). The number of male patients was double that of females. Postoperative pain during the first week was more intense in the band ligation group (2-5 vs 0-3 on a visual analogue scale). Post-defecation pain was more intense with band ligation and so was rectal tenesmus (P = 0.0059). The patients in the infrared coagulation group resumed their duties earlier (2 vs 4 days, P = 0.03), but also had a higher recurrence or failure rate (P = 0.03). Thus, we conclude that band ligation, although more effective in controlling symptoms and obliterating hemorrhoids, is associated with more pain and discomfort to the patient. As infrared coagulation can be conveniently repeated in case of recurrence, it could be considered to be a suitable alternative office procedure for the treatment of early stage hemorrhoids.
Resumo:
The present study describes an auxiliary tool in the diagnosis of left ventricular (LV) segmental wall motion (WM) abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN) was developed and validated for grading LV segmental WM using data from color kinesis (CK) images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1) normal, 2) mild hypokinesia, 3) moderate hypokinesia, 4) severe hypokinesia, 5) akinesia, and 6) dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R² = 0.99). In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.
Resumo:
This thesis studies metamaterial-inspired mirrors which provide the most general control over the amplitude and phase of the reflected wavefront. The goal is to explore practical possibilities in designing fully reflective electromagnetic structures with full control over reflection phase. The first part of the thesis describes a planar focusing metamirror with the focal distance less than the operating wavelength. Its practical applicability from the viewpoint of aberrations when the incident angle deviates from the normal one is verified numerically and experimentally. The results indicate that the proposed focusing metamirror can be efficiently employed in many different applications due to its advantages over other conventional mirrors. In the second part of the thesis a new theoretical concept of reflecting metasurface operation is introduced based on Huygens’ principle. This concept in contrast to known approaches takes into account all the requirements of perfect metamirror operation. The theory shows a route to improve the previously proposed metamirrors through tilting the individual inclusions of the structure at a chosen angle from normal. It is numerically tested and the results demonstrate improvements over the previous design.
Resumo:
In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941). For all other movements, prediction was low (range, 0.0316-0.8302). Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.
Resumo:
The mortality rate of older patients with intertrochanteric fractures has been increasing with the aging of populations in China. The purpose of this study was: 1) to develop an artificial neural network (ANN) using clinical information to predict the 1-year mortality of elderly patients with intertrochanteric fractures, and 2) to compare the ANN's predictive ability with that of logistic regression models. The ANN model was tested against actual outcomes of an intertrochanteric femoral fracture database in China. The ANN model was generated with eight clinical inputs and a single output. ANN's performance was compared with a logistic regression model created with the same inputs in terms of accuracy, sensitivity, specificity, and discriminability. The study population was composed of 2150 patients (679 males and 1471 females): 1432 in the training group and 718 new patients in the testing group. The ANN model that had eight neurons in the hidden layer had the highest accuracies among the four ANN models: 92.46 and 85.79% in both training and testing datasets, respectively. The areas under the receiver operating characteristic curves of the automatically selected ANN model for both datasets were 0.901 (95%CI=0.814-0.988) and 0.869 (95%CI=0.748-0.990), higher than the 0.745 (95%CI=0.612-0.879) and 0.728 (95%CI=0.595-0.862) of the logistic regression model. The ANN model can be used for predicting 1-year mortality in elderly patients with intertrochanteric fractures. It outperformed a logistic regression on multiple performance measures when given the same variables.
Resumo:
This work presents the results of a Hybrid Neural Network (HNN) technique as applied to modeling SCFE curves obtained from two Brazilian vegetable matrices. A series Hybrid Neural Network was employed to estimate the parameters of the phenomenological model. A small set of SCFE data of each vegetable was used to generate an extended data set, sufficient to train the network. Afterwards, other sets of experimental data, not used in the network training, were used to validate the present approach. The series HNN correlates well the experimental data and it is shown that the predictions accomplished with this technique may be promising for SCFE purposes.
Resumo:
Redes Neurais Artificiais são técnicas computacionais que se utilizam de um modelo matemático capaz de adquirir conhecimentos pela experiência; esse comportamento inteligente da rede provém das interações entre unidades de processamento, denominadas de neurônios artificiais. O objetivo deste trabalho foi criar uma rede neural capaz de prever a estabilidade de óleos vegetais, a partir de dados de suas composições químicas, visando um modelo para a previsão da shelf-life de óleos vegetais, tendo como parâmetros apenas dados de suas composições químicas. Os primeiros passos do processo de desenvolvimento da rede consistiram na coleta de dados relativos ao problema e sua separação em um conjunto de treinamento e outro de testes. Estes conjuntos apresentaram como variáveis dados de composição química, que incluíram os valores totais em ácidos graxos, fenóis, tocoferóis e a composição individual em ácidos graxos. O passo seguinte foi a execução do treinamento, onde o padrão de entrada apresentado à rede como parâmetro de estabilidade foi o índice de peróxido, determinado experimentalmente por um período de 16 dias de armazenagem na ausência de luz, a 65ºC. Após o treinamento foi testada a capacidade de previsão adquirida pela rede, em função do parâmetro de estabilidade adotado, mas com um novo grupo de óleos. Seguindo o teste, foi determinada a correlação linear entre os valores de estabilidade previstos pela rede e aqueles determinados experimentalmente. Com os resultados obtidos, pode-se confirmar a viabilidade de previsão da estabilidade de óleos vegetais pela rede neural, a partir de dados de sua composição química, utilizando como parâmetro de estabilidade o índice de peróxido.