959 resultados para River Basin Committees
Resumo:
Bibliography: p. 85-86.
Resumo:
Bibliography: p. 73.
Resumo:
Bibliography: p. 14.
Resumo:
Mode of access: Internet.
Resumo:
Water marketing, or mechanisms to acquire and redistribute water such as temporary water transfers, can represent a valuable response to drought for irrigation districts. The Department of Ecology, the US Bureau of Reclamation, and a workgroup composed of members from various entities collaborated to develop the Yakima River Basin Integrated Water Resource Management Plan (Integrated Plan) to better manage water resources and address ecosystem issues in the Yakima River Basin. The Integrated Plan addresses water marketing but it does not provide specifics on how barriers to inter‐district water transfers will be eliminated. This study asks irrigation district managers in the Yakima River basin about the factors they consider when deciding whether to engage in a temporary inter‐district water transfer or not. Results show that institutional barriers are the most common barrier to inter‐district water transfers. This topic requires further research on fallowing and irrigation district behavior in relation to the other water supply efforts outlined in the Integrated Plan. Finally, the water market in the Yakima basin can benefit from education and outreach to senior water rights holders, shortening the time frame to process expedited transfers, and documentation from irrigation districts reporting denial reasons for temporary inter‐district water transfers.
River basin surveillance using remotely sensed data: a water resources information management system
Resumo:
This thesis describes the development of an operational river basin water resources information management system. The river or drainage basin is the fundamental unit of the system; in both the modelling and prediction of hydrological processes, and in the monitoring of the effect of catchment management policies. A primary concern of the study is the collection of sufficient and sufficiently accurate information to model hydrological processes. Remote sensing, in combination with conventional point source measurement, can be a valuable source of information, but is often overlooked by hydrologists, due to the cost of acquisition and processing. This thesis describes a number of cost effective methods of acquiring remotely sensed imagery, from airborne video survey to real time ingestion of meteorological satellite data. Inexpensive micro-computer systems and peripherals are used throughout to process and manipulate the data. Spatial information systems provide a means of integrating these data with topographic and thematic cartographic data, and historical records. For the system to have any real potential the data must be stored in a readily accessible format and be easily manipulated within the database. The design of efficient man-machine interfaces and the use of software enginering methodologies are therefore included in this thesis as a major part of the design of the system. The use of low cost technologies, from micro-computers to video cameras, enables the introduction of water resources information management systems into developing countries where the potential benefits are greatest.
Resumo:
The primary purpose of this thesis was to design and create an Interactive Audit to conduct Environmental Site Assessments according to American Society of Testing Material's (ASTM) Phase I Standards at the Wagner Creek study area. ArcPad and ArcIMS are the major software that were used to create the model and ArcGIS Desktop was used for data analysis and to export shapefile symbology to ArcPad. Geographic Information Systems (GIS) is an effective tool to deploy these purposes. This technology was utilized to carry out data collection, data analysis and to display data interactively on the Internet. Electronic forms, customized for mobile devices were used to survey sites. This is an easy and fast way to collect and modify field data. New data such as land use, recognized environmental conditions, and underground storage tanks can be added into existing datasets. An updated map is then generated and uploaded to the Internet using ArcIMS technology. The field investigator has the option to generate and view the Inspection Form at the end of his survey on site, or print a hardcopy at base. The mobile device also automatically generates preliminary editable Executive Reports for any inspected site.
Resumo:
The Mara River in East Africa is currently experiencing poor water quality and increased fluctuations in seasonal flow. This study investigated technically effective and economically viable Best Management Practices for adoption in the Mara River Basin of Kenya that can stop further water resources degradation. A survey of 155 farmers was conducted in the upper catchment of the Kenyan side of the river basin. Farmers provided their assessment of BMPs that would best suit their farm in terms of water quality improvement, economic feasibility, and technicalsuitability. Cost data on different practices from farmers and published literature was collected. The results indicated that erosion control structures and runoff management practices were most suitable for adoption. The study estimated the total area that would be improved to restore water quality and reduce further water resources degradation. Farmers were found to incur losses from adopting new practices and would therefore require monetary support.
Resumo:
The purpose of this research was to investigate the influence of elevation and other terrain characteristics over the spatial and temporal distribution of rainfall. A comparative analysis was conducted between several methods of spatial interpolations using mean monthly precipitation values in order to select the best. Following those previous results it was possible to fit an Artificial Neural Network model for interpolation of monthly precipitation values for a period of 20 years, with input values such as longitude, latitude, elevation, four geomorphologic characteristics and anchored by seven weather stations, it reached a high correlation coefficient (r=0.85). This research demonstrated a strong influence of elevation and other geomorphologic variables over the spatial distribution of precipitation and the agreement that there are nonlinear relationships. This model will be used to fill gaps in time-series of monthly precipitation, and to generate maps of spatial distribution of monthly precipitation at a resolution of 1km2.
Resumo:
The purpose of this study was to analyze the interrelations between the needs of local people and their usage and management of natural fisheries. Between June and August 2001, 177 households in the basin were interviewed regarding their fishing customs. The results were analyzed with parametric and nonparametric statistics considering a cultural and a geographic comparison. Results confirm that indigenous households rely more on fisheries as a resource than colonists. Fishing takes place throughout the year but is more common in the dry season. Fishing is commonly practiced using hooks and cast nets. More destructive techniques such as dynamite and "barbasco" (poisonous plant) were also used. Indigenous people use a greater array of techniques and they fish at a greater diversity of sites. Respondents also reported that fishing yields have decreased recently. Some of the most common fish genera captured are Pimelodus and Leporinus.
Resumo:
Mara is a transboundary river located in Kenya and Tanzania and considered to be an important life line to the inhabitants of the Mara-Serengeti ecosystem. It is also a source of water for domestic water supply, irrigation, livestock and wildlife. The alarming increase of water demand as well as the decline in the river flow in recent years has been a major challenge for water resource managers and stakeholders. This has necessitated the knowledge of the available water resources in the basin at different times of the year. Historical rainfall, minimum and maximum stream flows were analyzed. Inter and intra-annual variability of trends in streamflow are discussed. Landsat imagery was utilized in order to analyze the land use land cover in the upper Mara River basin. The semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) was used to model the basin water balance and understand the hydrologic effect of the recent land use changes from forest-to-agriculture. The results of this study provided the potential hydrological impacts of three land use change scenarios in the upper Mara River basin. It also adds to the existing literature and knowledge base with a view of promoting better land use management practices in the basin.
Resumo:
Increasing dependence on groundwater in the Wakal River basin, India, jeopardizes water supply sustainability. A numerical groundwater model was developed to better understand the aquifer system and to evaluate its potential in terms of quantity and replenishment. Potential artificial recharge areas were delineated using landscape and hydrogeologic parameters, Geographic Information System (GIS), and remote sensing. Groundwater models are powerful tools for recharge estimation when transmissivity is known. Proper recharge must be applied to reproduce field-measured heads. The model showed that groundwater levels could decline significantly if there are two drought years in every four years that result in reduced recharge, and groundwater withdrawal is increased by 15%. The effect of such drought is currently uncertain however, because runoff from the basin is unknown. Remote sensing and GIS revealed areas with slopes less than 5%, forest cover, and Normalized Difference Vegetative Index greater than 0.5 that are suitable recharge sites.
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Resumo:
The age of organic material discharged by rivers provides information about its sources and carbon cycling processes within watersheds. While elevated ages in fluvially-transported organic matter are usually explained by erosion of soils and sediments, it is commonly assumed that mainly young organic material is discharged from flat tropical watersheds due to their extensive plant cover and high carbon turnover. Here we present compound-specific radiocarbon data of terrigenous organic fractions from a sedimentary archive offshore the Congo River in conjunction with molecular markers for methane-producing land cover reflecting wetland extent in the watershed. We find that the Congo River has been discharging aged organic matter for several thousand years with increasing ages from the mid- to the Late Holocene. This suggests that aged organic matter in modern samples is concealed by radiocarbon from nuclear weapons testing. By comparison to indicators for past rainfall changes we detect a systematic control of organic matter sequestration and release by continental hydrology mediating temporary carbon storage in wetlands. As aridification also leads to exposure and rapid remineralization of large amounts of previously stored labile organic matter we infer that this process may cause a profound direct climate feedback currently underestimated in carbon cycle assessments.
Resumo:
Sustainability can be indicated by a number of factors. Populations need to be aged evenly, ensuring a healthy equilibrium. Job opportunities must be numerous and of wide varieties to balance incomes from different employment sectors. Regions must also sustain vital natural resources in the area which are directly related to a place being self-sustaining. These indicators prove to be true, especially in Newfoundland, where people have struggled to remain in the small traditional communities that they consider being there 'home.' The population of Corner Brook and the surrounding areas can be stratified according to the values people hold to their special place. Even though people in western Newfoundland hold strong ties to their home, some parts of the region even though people in western Newfoundland hold strong ties to their home, some parts of the region struggle with employment, low incomes, out-migration, and dependency on declining natural resources. The aim of this paper is to present the process of designing a sample strategy for a human values pilot survey conducted in the city of Corner Brook. It will present a theoretical background over the period 2002-2006 to be used for sampling strategy.