981 resultados para Retinal ganglion cell degeneration
Resumo:
This thesis Entitled Neuronal degeneration in streptozotocin induced diabetic rats: effect of aegle marmelose and pyridoxine in pancreatic B cell proliferation and neuronal survival. Diabetes mellitus, a chronic metabolic disorder results in neurological dysfunctions and structural changes in the CNS. Antioxidant therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. Our results showed regional variation and imbalance in the expression pattern of dopaminergic receptor subtypes in diabetes and its role in imbalanced insulin signaling and glucose regulation. Disrupted dopaminergic signaling and increased hyperglycemic stress in diabetes contributed to the neuronal loss. Neuronal loss in diabetic rats mediated through the expression of pattern of GLUT-3, CREB, IGF-1, Akt-1, NF,B, second messengers- cAMP, cGMP, IP3 and activation of apoptotic factors factors- TNF-a,caspase-8. Disrupted dopaminergic receptor expressions and its signaling in pancreas contributed defective insulin secretion in diabetes. Activation of apoptotic factors- TNF- a,caspase-8 and defective functioning of neuronal survival factors, disrupted second messenger signaling modulated neuronal viability in diabetes. Hyperglycemic stress activated the expression of TNF-a,caspase-8, BAX and differential expression of anti oxidant enzymes- SOD and GPx in liver lead to apoptosis. Treatment of diabetic rats with insulin, Aegle marmelose and pyridoxine significantly reversed the altered dopaminergic neurotransmission, GLUT3, GLUT2, IGF-1 and second messenger signaling. Antihyperglycemic and antioxidant activity of Aegle marmelose and pyridoxine enhanced pancreatic B cell proliferation, increased insulin synthesis and secretion in diabetic rats. Thus our results conclude the neuroprotective and regenerating ability of Aegle marmelose and pyridoxine which in turn has a novel therapeutic role in the management of diabetes.
Resumo:
We investigated the possible participation of TRPV1 channels in retinal apoptosis and overall development. Retinas from newborn, male albino rats were treated in vitro with capsazepine, a TRPV1 antagonist. The expression of cell cycle markers was not changed after TRPV1 blockade, whereas capsazepine reduced the number of apoptotic cells throughout the retina,increased ERK1/2 and p38 phosphorylation and slightly reduced JNK phosphorylation. The expression of BAD, Bcl-2, as well as integral and cleaved capsase-3 were similar in all experimental conditions. Newborn rats were kept for 2 months after receiving high doses of capsazepine. In their retinas, calbindin and parvalbumin protein levels were upregulated, but only the number of amacrine-like, parvalbumin-positive cells was increased. The numbers of calretinin, calbindin, ChAT, vimentin, PKC-alpha and GABA-positive cells were similar in both conditions. Protein expression of synapsin Ib was also increased in the retinas of capsazepine-treated rats. Calretinin, vimentin, GFAP, synapsin Ia, synaptophysin and light neurofilament protein levels were not changed when compared to control values. Our results indicate that TRPV1 channels play a role in the control of the early apoptosis that occur during retinal development, which might be dependent on MAPK signaling. Moreover, it seems that TRPV1 function might be important for neuronal and synaptic maturation in the retina. (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis
Resumo:
Connexin (Cx) channels and hemichannels are involved in essential processes during nervous system development such as apoptosis, propagation of spontaneous activity and interkinetic nuclear movement. In the first part of this study, we extensively characterized Cx gene and protein expression during retinal histogenesis. We observed distinct spatio-temporal patterns among Studied Cx and an overriding, ubiquitous presence of Cx45 in progenitor cells. The role of Cx-mediated communication was assessed by using broad-spectrum (carbenoxotone, CBX) and Cx36/Cx50 channel-specific (quinine) blockers. In vivo application of CBX, but not quinine, caused remarkable reduction in retinal thickness, suggesting changes in cell proliferation/apoptosis ratio. Indeed, we observed a decreased number of mitotic cells in CBX-injected retinas, with no significant changes in the expression of PCNA, a marker for cells in proliferative state. Taken together, Our results pointed a pivotal role of Cx45 in the developing retina. Moreover, this study revealed that Cx-mediated Communication is essential in retinal histogenesis, particularly in the control of cell proliferation. (C) 2009 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
The visual system is a potential target for methylmercury (MeHg) intoxication. Nevertheless, there are few studies about the cellular mechanisms of toxicity induced by MeHg in retinal cells. Various reports have indicated a critical role for nitric oxide synthase (NOS) activation in modulating MeHg neurotoxicity in cerebellar and cortical regions. The aim of the present study is to describe the effects of MeHg on cell viability and NOS activation in chick retinal cell cultures. For this purpose, primary cultures were prepared from 7-day-old chick embryos: retinas were aseptically dissected and dissociated and cells were grown at 37ºC for 7-8 days. Cultures were exposed to MeHg (10 µM, 100 µM, and 1 mM) for 2, 4, and 6 h. Cell viability was measured by MTT method and NOS activity by monitoring the conversion of L-[H3]-arginine to L-[H3]-citrulline. The incubation of cultured retina cells with 10 and 100 µM MeHg promoted an increase of NOS activity compared to control (P < 0.05). Maximum values (P < 0.05) were reached after 4 h of MeHg incubation: increases of 81.6 ± 5.3 and 91.3 ± 3.7%, respectively (data are reported as mean ± SEM for 4 replicates). MeHg also promoted a concentration- and time-dependent decrease in cell viability, with the highest toxicity (a reduction of about 80% in cell viability) being observed at the concentration of 1 mM and after 4-6 h of incubation. The present study demonstrates for the first time the modulation of MeHg neurotoxicity in retinal cells by the nitrergic system
Resumo:
Accruing evidence indicates that connexin (Cx) channels in the gap junctions (GJ) are involved in neurodegeneration after injury. However, studies using KO animal models endowed apparently contradictory results in relation to the role of coupling in neuroprotection. We analyzed the role of Cx-mediated communication in a focal lesion induced by mechanical trauma of the retina, a model that allows spatial and temporal definition of the lesion with high reproducibility, permitting visualization of the focus, penumbra and adjacent areas. Cx36 and Cx43 exhibited distinct gene expression and protein levels throughout the neurodegeneration progress. Cx36 was observed close to TUNEL-positive nuclei, revealing the presence of this protein surrounding apoptotic cells. The functional role of cell coupling was assessed employing GJ blockers and openers combined with lactate dehydrogenase (LDH) assay, a direct method for evaluating cell death/viability. Carbenoxolone (CBX), a broad-spectrum GJ blocker, reduced LDH release after 4 hours, whereas quinine, a Cx36-channel specific blocker, decreased LDH release as early as 1 hour after lesion. Furthermore, analysis of dying cell distribution confirmed that the use of GJ blockers reduced apoptosis spread. Accordingly, blockade of GJ communication during neurodegeneration with quinine, but not CBX, caused downregulation of initial and effector caspases. To summarize, we observed specific changes in Cx gene expression and protein distribution during the progress of retinal degeneration, indicating the participation of these elements in acute neurodegeneration processes. More importantly, our results revealed that direct control of GJ channels permeability may take part in reliable neuroprotection strategies aimed to rapid, fast treatment of mechanical trauma in the retina.
Resumo:
OBJECTIVE: Bevacizumab has been widely used as a vascular endothelial growth factor antagonist in the treatment of retinal vasoproliferative disorders in adults and, more recently, in infants with retinopathy of prematurity. Recently, it has been proposed that vascular endothelial growth factor acts as a protective factor for neurons and glial cells, particularly in developing nervous tissue. The purpose of this study was to investigate the effects of bevacizumab on the developing retinas of juvenile rabbits. METHODS: Juvenile rabbits received bevacizumab intravitreously in one eye; the other eye acted as an untreated control. Slit-lamp and fundoscopic examinations were performed both prior to and seven days after treatment. At the same time, retina samples were analyzed using immunohistochemistry to detect autophagy and apoptosis as well as proliferation and glial reactivity. Morphometric analyses were performed, and the data were analyzed using the Mann-Whitney U test. RESULTS: No clinical abnormalities were observed in either treated or untreated eyes. However, immunohistochemical analyses revealed a reduction in the occurrence of programmed cell death and increases in both proliferation and reactivity in the bevacizumab-treated group compared with the untreated group. CONCLUSIONS: Bevacizumab appears to alter programmed cell death patterns and promote gliosis in the developing retinas of rabbits; therefore, it should be used with caution in developing eyes.
Resumo:
PURPOSE. To examine the effects of transcorneal electrical stimulation (TES) on retinal degeneration of light-exposed rats. METHODS. Thirty-three Sprague Dawley albino rats were divided into three groups: STIM (n = 15) received 60 minutes of TES, whereas SHAM (n = 15) received identical sham stimulation 2 hours before exposure to bright light with 16,000 lux; healthy animals (n = 3) served as controls for histology. At baseline and weekly for 3 consecutive weeks, dark-and light-adapted electroretinography was used to assess retinal function. Analysis of the response versus luminance function retrieved the parameters Vmax (saturation amplitude) and k (luminance to reach 1/2Vmax). Retinal morphology was assessed by histology (hematoxylin-eosin [HE] staining; TUNEL assay) and immunohistochemistry (rhodopsin staining). RESULTS. Vmax was higher in the STIM group compared with SHAM 1 week after light damage (mean intra-individual difference between groups 116.06 mu V; P = 0.046). The b-wave implicit time for the rod response (0.01 cd.s/m(2)) was lower in the STIM group compared with the SHAM group 2 weeks after light damage (mean intra-individual difference between groups 5.78 ms; P = 0.023); no other significant differences were found. Histological analyses showed photoreceptor cell death (TUNEL and HE) in SHAM, most pronounced in the superior hemiretina. STIM showed complete outer nuclear layer thickness preservation, reduced photoreceptor cell death, and preserved outer segment length compared with SHAM (HE and rhodopsin). CONCLUSIONS. This sham-controlled study shows that TES can protect retinal cells against mild light-induced degeneration in Sprague Dawley rats. These findings could help to establish TES as a treatment in human forms of retinal degenerative disease. (Invest Ophthalmol Vis Sci. 2012;53:5552-5561) DOI: 10.1167/iovs.12-10037
Resumo:
Neuronal circuits in the retina analyze images according to qualitative aspects such as color or motion, before the information is transmitted to higher visual areas of the brain. One example, studied for over the last four decades, is the detection of motion direction in ‘direction selective’ neurons. Recently, the starburst amacrine cell, one type of retinal interneuron, has emerged as an essential player in the computation of direction selectivity. In this study the mechanisms underlying the computation of direction selective calcium signals in starburst cell dendrites were investigated using whole-cell electrical recordings and two-photon calcium imaging. Analysis of the somatic electrical responses to visual stimulation and pharmacological agents indicated that the directional signal (i) is not computed presynaptically to starburst cells or by inhibitory network interactions. It is thus computed via a cell-intrinsic mechanism, which (ii) depends upon the differential, i.e. direction selective, activation of voltage-gated channels. Optically measuring dendritic calcium signals as a function of somatic voltage suggests (iii) a difference in resting membrane potential between the starburst cell’s soma and its distal dendrites. In conclusion, it is proposed that the mechanism underlying direction selectivity in starburst cell dendrites relies on intrinsic properties of the cell, particularly on the interaction of spatio-temporally structured synaptic inputs with voltage-gated channels, and their differential activation due to a somato-dendritic difference in membrane potential.
Resumo:
Conventional time-domain optical coherence tomography (OCT) has become an important tool for following dry or exudative age-related macular degeneration (AMD). Fourier-domain three-dimensional (3D) OCT was recently introduced. This study tested the reproducibility of 3D-OCT retinal thickness measurements in patients with dry and exudative AMD.
Resumo:
Retinal degeneration is followed by significant changes in the structure and function of photoreceptors in humans and several genetic animal models. However, it is not clear whether similar changes occur when the degeneration is induced pharmacologically. Therefore, our aim was to investigate the influence of retinotoxic N-methyl-N-nitrosourea (MNU) on the function, morphology and underlying molecular pathways of programmed cell death.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion.
Resumo:
BACKGROUND: We wished to investigate the toxicity of four immunosuppressant and antimetabolic drugs, which are known to influence postoperative wound healing, on three different human ocular cell lines. METHODS: Acute toxicity to cyclosporin A, azathioprine, mitomicyn C and daunorubicin was assessed in Chang cells by monitoring their uptake of propidium iodide during a 3-h period. Chronic toxicity was assessed by monitoring the proliferation and viability of subconfluent cultures of Chang cells, human corneal endothelial cells (HCECs) and retinal pigmented epithelial (RPE) cells after continuous exposure to the drugs for 7 days. RESULTS: Acute toxicity testing revealed no obvious effects. However, the chronic toxicity tests disclosed a narrow concentration range over which cell proliferation decreased dramatically but calcein metabolism was sustained. Although the three lines reacted similarly to each agent, HCECs were the most vulnerable to daunorubicin and mitomycin. At a daunorubicin concentration of 0.05 microg/ml, a 75% decrease in calcein metabolism (P < 0.001) and a > or = 95% cell loss (P < 0.001) were observed. At a mitomycin concentration of 0.01 mug/ml, cell density decreased by 61% (P < 0.001) without a change in calcein metabolism, but at 0.1 microg/ml, the latter parameter decreased to 12% (P = 0.00014). At this concentration the proliferation of Chang and RPE cells decreased by more than 50%, whilst calcein metabolism was largely sustained. Cyclosporin inhibited cell proliferation moderately at lower concentrations (< 5 microg/ml; P=0.05) and substantially at higher ones, with a corresponding decline in calcein metabolism. Azathioprine induced a profound decrease in both parameters at concentrations above 5 microg/ml. CONCLUSION: Daunorubicin, cyclosporin and azathioprine could be used to inhibit excessive intraocular scarring after glaucoma and vitreoretinal surgery without overly reducing cell viability. The attributes of immunosuppressants lie in their combined antiproliferative and immunomodulatory effects.