818 resultados para Reliability assessments
Resumo:
This paper develops a framework for evaluating sustainability assessment methods by separately analyzing their normative, systemic and procedural dimensions as suggested by Wiek and Binder [Wiek, A, Binder, C. Solution spaces for decision-making – a sustainability assessment tool for city-regions. Environ Impact Asses Rev 2005, 25: 589-608.]. The framework is then used to characterize indicator-based sustainability assessment methods in agriculture. For a long time, sustainability assessment in agriculture has focused mostly on environmental and technical issues, thus neglecting the economic and, above all, the social aspects of sustainability, the multifunctionality of agriculture and the applicability of the results. In response to these shortcomings, several integrative sustainability assessment methods have been developed for the agricultural sector. This paper reviews seven of these that represent the diversity of tools developed in this area. The reviewed assessment methods can be categorized into three types: (i) top-down farm assessment methods; (ii) top-down regional assessment methods with some stakeholder participation; (iii) bottom-up, integrated participatory or transdisciplinary methods with stakeholder participation throughout the process. The results readily show the trade-offs encountered when selecting an assessment method. A clear, standardized, top-down procedure allows for potentially benchmarking and comparing results across regions and sites. However, this comes at the cost of system specificity. As the top-down methods often have low stakeholder involvement, the application and implementation of the results might be difficult. Our analysis suggests that to include the aspects mentioned above in agricultural sustainability assessment, the bottomup, integrated participatory or transdisciplinary methods are the most suitable ones.
Resumo:
Several methods for assessing the sustainability of agricultural systems have been developed. These methods do not fully: (i) take into account the multi‐functionality of agriculture; (ii) include multidimensionality; (iii) utilize and implement the assessment knowledge; and (iv) identify conflicting goals and trade‐offs. This paper reviews seven recently developed multidisciplinary indicator‐based assessment methods with respect to their contribution to these shortcomings. All approaches include (1) normative aspects such as goal setting, (2) systemic aspects such as a specification of scale of analysis, (3) a reproducible structure of the approach. The approaches can be categorized into three typologies. The top‐down farm assessments focus on field or farm assessment. They have a clear procedure for measuring the indicators and assessing the sustainability of the system, which allows for benchmarking across farms. The degree of participation is low, potentially affecting the implementation of the results negatively. The top‐down regional assessment assesses the on‐farm and the regional effects. They include some participation to increase acceptance of the results. However, they miss the analysis of potential trade‐offs. The bottom‐up, integrated participatory or transdisciplinary approaches focus on a regional scale. Stakeholders are included throughout the whole process assuring the acceptance of the results and increasing the probability of implementation of developed measures. As they include the interaction between the indicators in their system representation, they allow for performing a trade‐off analysis. The bottom‐up, integrated participatory or transdisciplinary approaches seem to better overcome the four shortcomings mentioned above.
Resumo:
Reliability analysis of probabilistic forecasts, in particular through the rank histogram or Talagrand diagram, is revisited. Two shortcomings are pointed out: Firstly, a uniform rank histogram is but a necessary condition for reliability. Secondly, if the forecast is assumed to be reliable, an indication is needed how far a histogram is expected to deviate from uniformity merely due to randomness. Concerning the first shortcoming, it is suggested that forecasts be grouped or stratified along suitable criteria, and that reliability is analyzed individually for each forecast stratum. A reliable forecast should have uniform histograms for all individual forecast strata, not only for all forecasts as a whole. As to the second shortcoming, instead of the observed frequencies, the probability of the observed frequency is plotted, providing and indication of the likelihood of the result under the hypothesis that the forecast is reliable. Furthermore, a Goodness-Of-Fit statistic is discussed which is essentially the reliability term of the Ignorance score. The discussed tools are applied to medium range forecasts for 2 m-temperature anomalies at several locations and lead times. The forecasts are stratified along the expected ranked probability score. Those forecasts which feature a high expected score turn out to be particularly unreliable.
Resumo:
Scoring rules are an important tool for evaluating the performance of probabilistic forecasting schemes. A scoring rule is called strictly proper if its expectation is optimal if and only if the forecast probability represents the true distribution of the target. In the binary case, strictly proper scoring rules allow for a decomposition into terms related to the resolution and the reliability of a forecast. This fact is particularly well known for the Brier Score. In this article, this result is extended to forecasts for finite-valued targets. Both resolution and reliability are shown to have a positive effect on the score. It is demonstrated that resolution and reliability are directly related to forecast attributes that are desirable on grounds independent of the notion of scores. This finding can be considered an epistemological justification of measuring forecast quality by proper scoring rules. A link is provided to the original work of DeGroot and Fienberg, extending their concepts of sufficiency and refinement. The relation to the conjectured sharpness principle of Gneiting, et al., is elucidated.
Resumo:
References (20)Cited By (1)Export CitationAboutAbstract Proper scoring rules provide a useful means to evaluate probabilistic forecasts. Independent from scoring rules, it has been argued that reliability and resolution are desirable forecast attributes. The mathematical expectation value of the score allows for a decomposition into reliability and resolution related terms, demonstrating a relationship between scoring rules and reliability/resolution. A similar decomposition holds for the empirical (i.e. sample average) score over an archive of forecast–observation pairs. This empirical decomposition though provides a too optimistic estimate of the potential score (i.e. the optimum score which could be obtained through recalibration), showing that a forecast assessment based solely on the empirical resolution and reliability terms will be misleading. The differences between the theoretical and empirical decomposition are investigated, and specific recommendations are given how to obtain better estimators of reliability and resolution in the case of the Brier and Ignorance scoring rule.
Resumo:
Methods for assessing the sustainability of agricultural systems do often not fully (i) take into account the multifunctionality of agriculture, (ii) include multidimensionality, (iii) utilize and implement the assessment knowledge and (iv) identify conflicting goals and trade-offs. This chapter reviews seven recently developed multidisciplinary indicator-based assessment methods with respect to their contribution to these shortcomings. All approaches include (1) normative aspects such as goal setting, (2) systemic aspects such as a specification of scale of analysis and (3) a reproducible structure of the approach. The approaches can be categorized into three typologies: first, top-down farm assessments, which focus on field or farm assessment; second, top-down regional assessments, which assess the on-farm and the regional effects; and third, bottom-up, integrated participatory or transdisciplinary approaches, which focus on a regional scale. Our analysis shows that the bottom-up, integrated participatory or transdisciplinary approaches seem to better overcome the four shortcomings mentioned above.
Resumo:
Interest in the impacts of climate change is ever increasing. This is particularly true of the water sector where understanding potential changes in the occurrence of both floods and droughts is important for strategic planning. Climate variability has been shown to have a significant impact on UK climate and accounting for this in future climate cahgne projections is essential to fully anticipate potential future impacts. In this paper a new resampling methodology is developed which includes the variability of both baseline and future precipitation. The resampling methodology is applied to 13 CMIP3 climate models for the 2080s, resulting in an ensemble of monthly precipitation change factors. The change factors are applied to the Eden catchment in eastern Scotland with analysis undertaken for the sensitivity of future river flows to the changes in precipitation. Climate variability is shown to influence the magnitude and direction of change of both precipitation and in turn river flow, which are not apparent without the use of the resampling methodology. The transformation of precipitation changes to river flow changes display a degree of non-linearity due to the catchment's role in buffering the response. The resampling methodology developed in this paper provides a new technique for creating climate change scenarios which incorporate the important issue of climate variability.