895 resultados para Regional analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban population is growing at around 2.3 percent per annum in India. This is leading to urbanisation and often fuelling the dispersed development in the outskirts of urban and village centres with impacts such as loss of agricultural land, open space, and ecologically sensitive habitats. This type of upsurge is very much prevalent and persistent in most places, often inferred as sprawl. The direct implication of such urban sprawl is the change in land use and land cover of the region and lack of basic amenities, since planners are unable to visualise this type of growth patterns. This growth is normally left out in all government surveys (even in national population census), as this cannot be grouped under either urban or rural centre. The investigation of patterns of growth is very crucial from regional planning point of view to provide basic amenities in the region. The growth patterns of urban sprawl can be analysed and understood with the availability of temporal multi-sensor, multi-resolution spatial data. In order to optimise these spectral and spatial resolutions, image fusion techniques are required. This aids in integrating a lower spatial resolution multispectral (MSS) image (for example, IKONOS MSS bands of 4m spatial resolution) with a higher spatial resolution panchromatic (PAN) image (IKONOS PAN band of 1m spatial resolution) based on a simple spectral preservation fusion technique - the Smoothing Filter-based Intensity Modulation (SFIM). Spatial details are modulated to a co-registered lower resolution MSS image without altering its spectral properties and contrast by using a ratio between a higher resolution image and its low pass filtered (smoothing filter) image. The visual evaluation and statistical analysis confirms that SFIM is a superior fusion technique for improving spatial detail of MSS images with the preservation of spectral properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urbanisation has evinced interest from a wide section of the society including experts, amateurs, and novices. The multidisciplinary scope of the subject invokes the interest from ecologists, to urban planners and civil engineers, to sociologists, to administrators and policy makers, students and finally the common man. With the development and infrastructure initiatives mostly around the urban centres, the impacts of urbanisation and sprawl would be on the environment and the natural resources. The wisdom lies in how effectively we plan the urban growth without - hampering the environment, excessively harnessing the natural resources and eventually disturbing the natural set-up. The research on these help urban residents and policymakers make informed decisions and take action to restore these resources before they are lost. Ultimately the power to balance the urban ecosystems rests with regional awareness, policies, administration practices, management issues and operational problems. This publication on urban systems is aimed at helping scientists, policy makers, engineers, urban planners and ultimately the common man to visualise how towns and cities grow over a period of time based on investigations in the regions around the highway and cities. Two important highways in Karnataka, South India, viz., Bangalore - Mysore highway and the Mangalore - Udupi highway, in Karnataka and the Tiruchirapalli - Tanjavore - Kumbakonam triangular road network in Tamil Nadu, South India, were considered in this investigation. Geographic Information System and Remote Sensing data were used to analyse the pattern of urbanisation. This was coupled with the spatial and temporal data from the Survey of India toposheets (for 1972), satellite imageries procured from National Remote Sensing Agency (NRSA) (LANDSAT TM for 1987 and IRS LISS III for 1999), demographic details from the Census of India (1971, 1981, 1991 and 2001) and the village maps from the Directorate of Survey Settlements and Land Records, Government of Karnataka. All this enabled in quantifying the increase in the built-up area for nearly three decades. With intent of identifying the potential sprawl zones, this could be modelled and projected for the future decades. Apart from these the study could quantify some of the metrics that could be used in the study of urban sprawl.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of seismic response analysis of layered ground in Ahmedabad City during the earthquake in Bhuj on 26(th) January 2001. An attempt has been made to understand the reasons for the failure of multistoreyed buildings founded on soft alluvial deposits in Ahmedabad. Standard Penetration test at a site very close to the Sabarmati river belt was carried out for geotechnical investigations. The program SHAKE91, widely used in the field of earthquake engineering for computing the seismic response of horizontally layered soil deposits, was used to analyse the soil profile at the selected site considering the ground as one dimensional layered elastic system. The ground accelerations recorded at the ground floor of the Regional Passport Staff Quarters building, which is very close to the investigated site, was used as input motion. Also, Finite Element Analysis was carried out for different configurations of multistorey building frames for evaluating their natural frequencies and is compared with the predominant frequency of the layered soil system. The results reveal that the varying degree of damage to multistorey buildings in the close proximity of Sabarmati river area was essentially due to the large amplification of the ground and the near resonance condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precompression, wherein the probable settlements are achieved at an accelerated pace through preloading, well before the construction is take up, has been widely used in areas of ground improvement with respect to soft clays. By applying a temporary surcharge load in excess or less than the permanent load, the soil achieves higher initial effective stress and when the final load is applied, the soil experiences, lower load increment ratio or negative load increment ratio. In this paper, based on the laboratory experiments conducted on cochin marine clays and Mangalore marine clays, attempts have been made to analyse the volume change behaviour of preloaded clays. It has been brought out that for a preloaded clay, the final load increment ratio has an important role in its behaviour. Effective preloading not only reduces the final settlement due to primary, the secondary consolidation settlement also gets reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of machine foundations are done on the basis of two principal criteria viz., vibration amplitude should be within the permissible limits and natural frequency of machine-foundation-soil system should be away from the operating frequency (i.e. avoidance of resonance condition). In this paper the nondimensional amplitude factor M-m or M-r m and the nondimensional frequency factor a(o m) at resonance are related using elastic half space theory and is used as a new approach for a simplified design procedure for the design of machine foundations for all the modes of vibration fiz. vertical, horizontal, rocking and torsional for rigid base pressure distribution and weighted average displacement condition. The analysis show that one need not know the value of Poisson's ratio for rotating mass system for all the modes of vibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An updated catalog of earthquakes has been prepared for the Andaman-Nicobar and adjoining regions. The catalog was homogenized to a unified magnitude scale, and declustering of the catalog was performed to remove aftershocks and foreshocks. Eleven regional source zones were identified in the study area to account for local variability in seismicity characteristics. The seismicity parameters were estimated for each of these source zones, and the seismic hazard evaluation of the Andaman-Nicobar region has been performed using different source models and attenuation relations. Probabilistic seismic hazard analysis has been performed with currently available data and their best possible scientific interpretation using an appropriate instrument such as the logic tree to explicitly account for epistemic uncertainty by considering alternative models (source models, maximum magnitude, and attenuation relationships). The hazard maps for different periods have been produced for horizontal ground motion on the bedrock level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In view of the major advancement made in understanding the seismicity and seismotectonics of the Indian region in recent times, an updated probabilistic seismic hazard map of India covering 6-38 degrees N and 68-98 degrees E is prepared. This paper presents the results of probabilistic seismic hazard analysis of India done using regional seismic source zones and four well recognized attenuation relations considering varied tectonic provinces in the region. The study area was divided into small grids of size 0.1 degrees x 0.1 degrees. Peak Horizontal Acceleration (PHA) and spectral accelerations for periods 0.1 s and 1 s have been estimated and contour maps showing the spatial variation of the same are presented in the paper. The present study shows that the seismic hazard is moderate in peninsular shield, but the hazard in most parts of North and Northeast India is high. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach to model the expected impacts of climate change on irrigation water demand in a reservoir command area. A statistical downscaling model and an evapotranspiration model are used with a general circulation model (GCM) output to predict the anticipated change in the monthly irrigation water requirement of a crop. Specifically, we quantify the likely changes in irrigation water demands at a location in the command area, as a response to the projected changes in precipitation and evapotranspiration at that location. Statistical downscaling with a canonical correlation analysis is carried out to develop the future scenarios of meteorological variables (rainfall, relative humidity (RH), wind speed (U-2), radiation, maximum (Tmax) and minimum (Tmin) temperatures) starting with simulations provided by a GCM for a specified emission scenario. The medium resolution Model for Interdisciplinary Research on Climate GCM is used with the A1B scenario, to assess the likely changes in irrigation demands for paddy, sugarcane, permanent garden and semidry crops over the command area of Bhadra reservoir, India. Results from the downscaling model suggest that the monthly rainfall is likely to increase in the reservoir command area. RH, Tmax and Tmin are also projected to increase with small changes in U-2. Consequently, the reference evapotranspiration, modeled by the Penman-Monteith equation, is predicted to increase. The irrigation requirements are assessed on monthly scale at nine selected locations encompassing the Bhadra reservoir command area. The irrigation requirements are projected to increase, in most cases, suggesting that the effect of projected increase in rainfall on the irrigation demands is offset by the effect due to projected increase/change in other meteorological variables (viz., Tmax and Tmin, solar radiation, RH and U-2). The irrigation demand assessment study carried out at a river basin will be useful for future irrigation management systems. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precise information on streamflows is of major importance for planning and monitoring of water resources schemes related to hydro power, water supply, irrigation, flood control, and for maintaining ecosystem. Engineers encounter challenges when streamflow data are either unavailable or inadequate at target locations. To address these challenges, there have been efforts to develop methodologies that facilitate prediction of streamflow at ungauged sites. Conventionally, time intensive and data exhaustive rainfall-runoff models are used to arrive at streamflow at ungauged sites. Most recent studies show improved methods based on regionalization using Flow Duration Curves (FDCs). A FDC is a graphical representation of streamflow variability, which is a plot between streamflow values and their corresponding exceedance probabilities that are determined using a plotting position formula. It provides information on the percentage of time any specified magnitude of streamflow is equaled or exceeded. The present study assesses the effectiveness of two methods to predict streamflow at ungauged sites by application to catchments in Mahanadi river basin, India. The methods considered are (i) Regional flow duration curve method, and (ii) Area Ratio method. The first method involves (a) the development of regression relationships between percentile flows and attributes of catchments in the study area, (b) use of the relationships to construct regional FDC for the ungauged site, and (c) use of a spatial interpolation technique to decode information in FDC to construct streamflow time series for the ungauged site. Area ratio method is conventionally used to transfer streamflow related information from gauged sites to ungauged sites. Attributes that have been considered for the analysis include variables representing hydrology, climatology, topography, land-use/land- cover and soil properties corresponding to catchments in the study area. Effectiveness of the presented methods is assessed using jack knife cross-validation. Conclusions based on the study are presented and discussed. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of homogeneous hydrometeorological regions (HMRs) is necessary for various applications. Such regions are delineated by various approaches considering rainfall and temperature as two key variables. In conventional approaches, formation of regions is based on principal components (PCs)/statistics/indices determined from time series of the key variables at monthly and seasonal scales. An issue with use of PCs for regionalization is that they have to be extracted from contemporaneous records of hydrometeorological variables. Therefore, delineated regions may not be effective when the available records are limited over contemporaneous time period. A drawback associated with the use of statistics/indices is that they do not provide effective representation of the key variables when the records exhibit non-stationarity. Consequently, the resulting regions may not be effective for the desired purpose. To address these issues, a new approach is proposed in this article. The approach considers information extracted from wavelet transformations of the observed multivariate hydrometeorological time series as the basis for regionalization by global fuzzy c-means clustering procedure. The approach can account for dynamic variability in the time series and its non-stationarity (if any). Effectiveness of the proposed approach in forming HMRs is demonstrated by application to India, as there are no prior attempts to form such regions over the country. Drought severity-area-frequency (SAF) curves are constructed corresponding to each of the newly formed regions for the use in regional drought analysis, by considering standardized precipitation evapotranspiration index (SPEI) as the drought indicator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How immigration affects the labor market of the host country is a topic of major concern for many immigrant-receiving nations. Spain is no exception following the rapid increase in immigrant flows experienced over the past decade. We assess the impact of immigration on Spanish natives’ income by estimating the net immigration surplus accruing at the national level and at high immigrant-receiving regions while taking into account the imperfect substitutability of immigrant and native labor. Specifically, using information on the occupational densities of immigrants and natives of different skill levels, we develop a mapping of immigrant-to-native self-reported skills that reveals the combination of natives across skills that would be equivalent to an immigrant of a given self-reported skill level, which we use to account for any differences between immigrant self-reported skill levels and their effective skills according to the Spanish labor market. We find that the immigrant surplus amounts to 0.04 percent of GDP at the national level and it is even higher for some of the main immigrant-receiving regions, such as Cataluña, Valencia, Madrid, and Murcia.