783 resultados para Reflection loss
Resumo:
Mass production of prestressed concrete beams is facilitated by the accelerated curing of the concrete. The ·method most commonly used for this purpose is steam curing at atmospheric pressure. This requires concrete temperatures as high as 150°F. during the curing period. Prestressing facilities in Iowa are located out of doors. This means that during the winter season the forms are set and the steel cables are stressed at temperatures as low as 0°F. The thermal expansion of the prestressing cables should result in a reduction of the stress which was placed in them at the lower temperature. If the stress is reduced in the cables, then the amount of prestress ultimately transferred to the concrete may be less than the amount for which the beam was designed. Research project HR-62 was undertaken to measure and explain the difference between the initial stress placed in the cables and the actual stress which is eventually transferred to the concrete. The project was assigned to the Materials Department Laboratory under the general supervision of the Testing Engineer, Mr. James W. Johnson. A small stress bed complete with steam curing facilities was set up in the laboratory, and prestressed concrete beams were fabricated under closely controlled conditions. Measurements were made to determine the initial stress in the steel and the final stress in the concrete. The results of these tests indicate that there is a general loss of prestressing force in excess of that caused by elastic shortening of the concrete. The exact amount of the loss and the identification of the factors involved could not be determined from this limited investigation.
Resumo:
Selostus: Sadonkorjuuajan vaikutus sipulin varastohävikkiin ja varastoinnin jälkeiseen versomiseen
Resumo:
Abstract
Resumo:
BACKGROUND: Intraabdominal adipose tissue (IAAT) is the body fat depot most strongly related to disease risk. Weight reduction is advocated for overweight people to reduce total body fat and IAAT, although little is known about the effect of weight loss on abdominal fat distribution in different races. OBJECTIVE: We compared the effects of diet-induced weight loss on changes in abdominal fat distribution in white and black women. DESIGN: We studied 23 white and 23 black women, similar in age and body composition, in the overweight state [mean body mass index (BMI; in kg/m(2)): 28.8] and the normal-weight state (mean BMI: 24.0) and 38 never-overweight control women (mean BMI: 23.4). We measured total body fat by using a 4-compartment model, trunk fat by using dual-energy X-ray absorptiometry, and cross-sectional areas of IAAT (at the fourth and fifth lumbar vertebrae) and subcutaneous abdominal adipose tissue (SAAT) by using computed tomography. RESULTS: Weight loss was similar in white and black women (13.1 and 12.6 kg, respectively), as were losses of total fat, trunk fat, and waist circumference. However, white women lost more IAAT (P < 0.001) and less SAAT (P < 0.03) than did black women. Fat patterns regressed toward those of their respective control groups. Changes in waist circumference correlated with changes in IAAT in white women (r = 0.54, P < 0.05) but not in black women (r = 0.19, NS). CONCLUSIONS: Despite comparable decreases in total and trunk fat, white women lost more IAAT and less SAAT than did black women. Waist circumference was not a suitable surrogate marker for tracking changes in the visceral fat compartment in black women.
Resumo:
In the present work we review the way in which the electron-matter interaction allows us to perform electron energy loss spectroscopy (EELS), as well as the latest developments in the technique and some of the most relevant results of EELS as a characterization tool in nanoscience and nanotechnology.
Resumo:
Selostus: Öljykasvien siementen variseminen ennen puintia
Fatigue and weight loss predict survival on circadian chemotherapy for metastatic colorectal cancer.
Resumo:
BACKGROUND: Chemotherapy-induced neutropenia has been associated with prolonged survival selectively in patients on a conventional schedule (combined 5-fluorouracil, leucovorin, and oxaliplatin [FOLFOX2]) but not on a chronomodulated schedule of the same drugs administered at specific circadian times (chronoFLO4). The authors hypothesized that the early occurrence of chemotherapy-induced symptoms correlated with circadian disruption would selectively hinder the efficacy of chronotherapy. METHODS: Fatigue and weight loss (FWL) were considered to be associated with circadian disruption based on previous data. Patients with metastatic colorectal cancer (nâeuro0/00=âeuro0/00543) from an international phase 3 trial comparing FOLFOX2 with chronoFLO4 were categorized into 4 subgroups according to the occurrence of FWL or other clinically relevant toxicities during the initial 2 courses of chemotherapy. Multivariate Cox models were used to assess the role of toxicity on the time to progression (TTP) and overall survival (OS). RESULTS: The proportions of patients in the 4 subgroups were comparable in both treatment arms (Pâeuro0/00=âeuro0/00.77). No toxicity was associated with TTP or OS on FOLFOX2. The median OS on FOLFOX2 ranged from 16.4 (95% confidence limits [CL], 7.2-25.6 months) to 19.8 months (95% CL, 17.7-22.0 months) according to toxicity subgroup (Pâeuro0/00=âeuro0/00.45). Conversely, FWL, but no other toxicity, independently predicted for significantly shorter TTP (Pâeuro0/00<âeuro0/00.0001) and OS (Pâeuro0/00=âeuro0/00.001) on chronoFLO4. The median OS on chronoFLO4 was 13.8 months (95% CL, 10.4-17.2 months) or 21.1 months (95% CL, 19.0-23.1 months) according to presence or absence of chemotherapy-induced FWL, respectively. CONCLUSIONS: Early onset chemotherapy-induced FWL was an independent predictor of poor TTP and OS only on chronotherapy. Dynamic monitoring to detect early chemotherapy-induced circadian disruption could allow the optimization of rapid chronotherapy and concomitant improvements in safety and efficacy.
Resumo:
Surface-based ground penetrating radar (GPR) and electrical resistance tomography (ERT) are common tools for aquifer characterization, because both methods provide data that are sensitive to hydrogeologically relevant quantities. To retrieve bulk subsurface properties at high resolution, we suggest incorporating structural information derived from GPR reflection data when inverting surface ERT data. This reduces resolution limitations, which might hinder quantitative interpretations. Surface-based GPR reflection and ERT data have been recorded on an exposed gravel bar within a restored section of a previously channelized river in northeastern Switzerland to characterize an underlying gravel aquifer. The GPR reflection data acquired over an area of 240×40 m map the aquifer's thickness and two internal sub-horizontal regions with different depositional patterns. The interface between these two regions and the boundary of the aquifer with then underlying clay are incorporated in an unstructured ERT mesh. Subsequent inversions are performed without applying smoothness constraints across these boundaries. Inversion models obtained by using these structural constraints contain subtle resistivity variations within the aquifer that are hardly visible in standard inversion models as a result of strong vertical smearing in the latter. In the upper aquifer region, with high GPR coherency and horizontal layering, the resistivity is moderately high (N300 Ωm). We suggest that this region consists of sediments that were rearranged during more than a century of channelized flow. In the lower low coherency region, the GPR image reveals fluvial features (e.g., foresets) and generally more heterogeneous deposits. In this region, the resistivity is lower (~200 Ωm), which we attribute to increased amounts of fines in some of the well-sorted fluvial deposits. We also find elongated conductive anomalies that correspond to the location of river embankments that were removed in 2002.
Resumo:
Staphylococcus aureus can colonize and infect both humans and animals, but isolates from both hosts tend to belong to different lineages. Our recent finding of bovine-adapted S. aureus showing close genetic relationship to the human S. aureus clonal complex 8 (CC8) allowed us to examine the genetic basis of host adaptation in this particular CC. Using total chromosome microarrays, we compared the genetic makeup of 14 CC8 isolates obtained from cows suffering subclinical mastitis, with nine CC8 isolates from colonized or infected human patients, and nine S. aureus isolates belonging to typical bovine CCs. CC8 isolates were found to segregate in a unique group, different from the typical bovine CCs. Within this CC8 group, human and bovine isolates further segregated into three subgroups, among which two contained a mix of human and bovine isolates, and one contained only bovine isolates. This distribution into specific clusters and subclusters reflected major differences in the S. aureus content of mobile genetic elements (MGEs). Indeed, while the mixed human-bovine clusters carried commonly human-associated β-hemolysin converting prophages, the bovine-only isolates were devoid of such prophages but harbored an additional new non-mec staphylococcal cassette chromosome (SCC) unique to bovine CC8 isolates. This composite cassette carried a gene coding for a new LPXTG-surface protein sharing homologies with a protein found in the environmental bacterium Geobacillus thermoglucosidans. Thus, in contrast to human CC8 isolates, the bovine-only CC8 group was associated with the combined loss of β-hemolysin converting prophages and gain of a new SCC probably acquired in the animal environment. Remaining questions are whether the new LPXTG-protein plays a role in bovine colonization or infection, and whether the new SCC could further acquire antibiotic-resistance genes and carry them back to human.
Resumo:
Multi-decadal increase in shell removal by tourists, a process that may accelerate degradation of natural habitats, was quantified via two series of monthly surveys, conducted thirty years apart (1978-1981 and 2008-2010) in one small embayment on the Mediterranean coast of Spain. Over the last three decades, the local tourist arrivals have increased almost three-fold (2.74), while the area has remained unaffected by urban encroachment and commercial fisheries. Concomitantly, abundance of mollusk shells along the shoreline decreased almost three-fold (2.62) and displayed a tight inverse correlation with tourist arrivals. A four-fold increase in tourist arrivals observed globally over the last 30 years has likely induced a comparable worldwide acceleration in shell removal from marine shorelines and exerted multiple negative (but currently unquantifiable) habitat changes that may include increased beach erosion, changes in carbon and calcium cycles, and decline in diversity and abundance of organisms dependent on shell availability.
Resumo:
The inactivation of ERG3, a gene encoding sterol Δ⁵,⁶-desaturase (essential for ergosterol biosynthesis), is a known mechanism of in vitro resistance to azole antifungal drugs in the human pathogen Candida albicans. ERG3 inactivation typically results in loss of filamentation and attenuated virulence in animal models of disseminated candidiasis. In this work, we identified a C. albicans clinical isolate (VSY2) with high-level resistance to azole drugs in vitro and an absence of ergosterol but normal filamentation. Sequencing of ERG3 in VSY2 revealed a double base deletion leading to a premature stop codon and thus a nonfunctional enzyme. The reversion of the double base deletion in the mutant allele (erg3-1) restored ergosterol biosynthesis and full fluconazole susceptibility in VSY2, confirming that ERG3 inactivation was the mechanism of azole resistance. Additionally, the replacement of both ERG3 alleles by erg3-1 in the wild-type strain SC5314 led to the absence of ergosterol and to fluconazole resistance without affecting filamentation. In a mouse model of disseminated candidiasis, the clinical ERG3 mutant VSY2 produced kidney fungal burdens and mouse survival comparable to those obtained with the wild-type control. Interestingly, while VSY2 was resistant to fluconazole both in vitro and in vivo, the ERG3-derived mutant of SC5314 was resistant only in vitro and was less virulent than the wild type. This suggests that VSY2 compensated for the in vivo fitness defect of ERG3 inactivation by a still unknown mechanism(s). Taken together, our results provide evidence that contrary to previous reports inactivation of ERG3 does not necessarily affect filamentation and virulence.
Resumo:
Glucose-induced thermogenesis (GIT) after a 100-g oral glucose load was measured by continuous indirect calorimetry in 32 nondiabetic and diabetic obese subjects and compared to 17 young and 13 middle aged control subjects. The obese subjects were divided into three groups: A (n = 12) normal glucose tolerance, B (n = 13) impaired glucose tolerance, and C (n = 7) diabetics, and were studied before and after a body weight loss ranging from 9.6 to 33.5 kg consecutive to a 4 to 6 months hypocaloric diet. GIT, measured over 3 h and expressed as percentage of the energy content of the load, was significantly reduced in obese groups A and C (6.2 +/- 0.6, and 3.8 +/- 0.7%, respectively) when compared to their age-matched control groups: 8.6 +/- 0.7 (young) and 5.8 +/- 0.3% (middle aged). Obese group B had a GIT of 6.1 +/- 0.6% which was lower than that of the young control group but not different from the middle-aged control group. After weight loss, GIT in the obese was further reduced in groups A and B than before weight loss: ie, 3.4 +/- 0.6 (p less than 0.001), 3.7 +/- 0.5 (p less than 0.01) respectively, whereas in group C, weight loss induced no further diminution in GIT (3.8 +/- 0.6%). These results support the concept of a thermogenic defect after glucose ingestion in obese individuals which is not the consequence of their excess body weight but may be one of the factors favoring the relapse of obesity after weight loss.
Resumo:
A loss in the necessary amount of sleep alters expression of genes and proteins implicated in brain plasticity, but key proteins that render neuronal circuits sensitive to sleep disturbance are unknown. We show that mild (4-6 h) sleep deprivation (SD) selectively augmented the number of NR2A subunits of NMDA receptors on postsynaptic densities of adult mouse CA1 synapses. The greater synaptic NR2A content facilitated induction of CA3-CA1 long-term depression in the theta frequency stimulation range and augmented the synaptic modification threshold. NR2A-knock-out mice maintained behavioral response to SD, including compensatory increase in post-deprivation resting time, but hippocampal synaptic plasticity was insensitive to sleep loss. After SD, the balance between synaptically activated and slowly recruited NMDA receptor pools during temporal summation was disrupted. Together, these results indicate that NR2A is obligatory for the consequences of sleep loss on hippocampal synaptic plasticity. These findings could advance pharmacological strategies aiming to sustain hippocampal function during sleep restriction.