992 resultados para REPRODUCTIVE MODE
Resumo:
Common-mode voltage generated by the PWM inverter causes shaft voltage, bearing current and ground leakage current in induction motor drive system, resulting in an early motor failure. This paper presents a common-mode elimination scheme for a five-level inverter with reduced power circuit complexity. The proposed scheme is realised by cascading conventional two-level and conventional NPC three-level inverters in conjunction with an open-end winding three-phase induction motor drive and the common-mode voltage (CMV) elimination is achieved by using only switching states that result in zero CMV, for the entire modulation range.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer in decision directed mode (DD-LMS-LE). We study how well this equalizer tracks the optimal Wiener equalizer. Initially we study a fixed channel.For a fixed channel, we obtain the existence of DD attractors near the Wiener filter at high SNRs using an ODE (Ordinary Differential Equation) approximating the DD-LMS-LE. We also show, via examples, that the DD attractors may not be close to the Wiener filters at low SNRs. Next we study a time varying fading channel modeled by an Auto-regressive (AR) process of order 2. The DD-LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs. We show via examples that the LMS equalizer ODE show tracks the ODE corresponding to the instantaneous Wiener filter when the SNR is high. This may not happen at low SNRs.
Resumo:
The main idea proposed in this paper is that in a vertically aligned array of short carbon nanotubes (CNTs) grown on a metal substrate, we consider a frequency dependent electric field, so that the mode-specific propagation of phonons, in correspondence with the strained band structure and the dispersion curves, take place. We perform theoretical calculations to validate this idea with a view of optimizing the field emission behavior of the CNT array. This is the first approach of its kind, and is in contrast to the the conventional approach where a DC bias voltage is applied in order to observe field emission. A first set of experimental results presented in this paper gives a clear indication that phonon-assisted control of field emission current in CNT based thin film diode is possible.
Resumo:
Active-clamp dc-dc converters are pulsewidth-modulated converters having two switches featuring zero-voltage switching at frequencies beyond 100 kHz. Generalized equivalent circuits valid for steady-state and dynamic performance have been proposed for the family of active-clamp converters. The active-clamp converter is analyzed for its dynamic behavior under current control in this paper. The steady-state stability analysis is presented. On account of the lossless damping inherent in the active-clamp converters, it appears that the stability region in the current-controlled active-clamp converters get extended for duty ratios, a little greater than 0.5 unlike in conventional hard-switched converters. The conventional graphical approach fails to assess the stability of current-controlled active-clamp converters, due to the coupling between the filter inductor current and resonant inductor current. An analysis that takes into account the presence of the resonant elements is presented to establish the condition for stability. This method correctly predicts the stability of the current-controlled active-clamp converters. A simple expression for the maximum duty cycle for subharmonic-free operation is obtained. The results are verified experimentally.
Resumo:
In this article, finite-time consensus algorithms for a swarm of self-propelling agents based on sliding mode control and graph algebraic theories are presented. Algorithms are developed for swarms that can be described by balanced graphs and that are comprised of agents with dynamics of the same order. Agents with first and higher order dynamics are considered. For consensus, the agents' inputs are chosen to enforce sliding mode on surfaces dependent on the graph Laplacian matrix. The algorithms allow for the tuning of the time taken by the swarm to reach a consensus as well as the consensus value. As an example, the case when a swarm of first-order agents is in cyclic pursuit is considered.
Resumo:
A methodology is presented for the synthesis of analog circuits using piecewise linear (PWL) approximations. The function to be synthesized is divided into PWL segments such that each segment can be realized using elementary MOS current-mode programmable-gain circuits. A number of these elementary current-mode circuits when connected in parallel, it is possible to realize piecewise linear approximation of any arbitrary analog function with in the allowed approximation error bounds. Simulation results show a close agreement between the desired function and the synthesized output. The number of PWL segments used for approximation and hence the circuit area is determined by the required accuracy and the smoothness of the resulting function.
Resumo:
We show that a fluid under strong spatially periodic confinement displays a glass transition within mode-coupling theory at a much lower density than the corresponding bulk system. We use fluctuating hydrodynamics, with confinement imposed through a periodic potential whose wavelength plays an important role in our treatment. To make the calculation tractable we implement a detailed calculation in one dimension. Although we do not expect simple 1d fluids to show a glass transition, our results are indicative of the behavior expected in higher dimensions. In a certain region of parameter space we observe a three-step relaxation reported recently in computer simulations [S. H. Krishnan, Ph.D. thesis, Indian Institute of Science (2005); Kim et al., Eur. Phys. J. Special Topics 189, 135 (2010)] and a glass-glass transition. We compare our results to those of Krakoviack [Phys. Rev. E 75, 031503 (2007)] and Lang et al. [Phys. Rev. Lett. 105, 125701 (2010)].
Resumo:
In this paper we report resonance Raman scattering from graphite covering excitation energies in the range 2.4 eV to 6 eV. The Raman excitation profile shows a maximum at 4.94 eV (lambda = 251nm) for the G - band (1582 cm(-1)). The D-band at similar to 1350 cm(-1), attributed to disorder activated Raman scattering, does not show up in Raman spectra recorded with excitation wavelengths smaller than 257.3 nm, revealing that the resonance enhancements of the G and D-modes are widely different. Earlier Raman measurements in carbon materials have also revealed a very large and unusual dependence of the D - mode frequency on excitation laser wavelength. This phenomenon is also observed in carbon nanotubes. In this paper we show for the first time that the above unusual dependence arises from the disorder - induced double resonance mechanism.
Resumo:
Stirred tank bioreactors, employed in the production of a variety of biologically active chemicals, are often operated in batch, fed-batch, and continuous modes of operation. The optimal design of bioreactor is dependent on the kinetics of the biological process, as well as the performance criteria (yield, productivity, etc.) under consideration. In this paper, a general framework is proposed for addressing the two key issues related to the optimal design of a bioreactor, namely, (i) choice of the best operating mode and (ii) the corresponding flow rate trajectories. The optimal bioreactor design problem is formulated with initial conditions and inlet and outlet flow rate trajectories as decision variables to maximize more than one performance criteria (yield, productivity, etc.) as objective functions. A computational methodology based on genetic algorithm approach is developed to solve this challenging multiobjective optimization problem with multiple decision variables. The applicability of the algorithm is illustrated by solving two challenging problems from the bioreactor optimization literature.
Resumo:
As an example of a front propagation, we study the propagation of a three-dimensional nonlinear wavefront into a polytropic gas in a uniform state and at rest. The successive positions and geometry of the wavefront are obtained by solving the conservation form of equations of a weakly nonlinear ray theory. The proposed set of equations forms a weakly hyperbolic system of seven conservation laws with an additional vector constraint, each of whose components is a divergence-free condition. This constraint is an involution for the system of conservation laws, and it is termed a geometric solenoidal constraint. The analysis of a Cauchy problem for the linearized system shows that when this constraint is satisfied initially, the solution does not exhibit any Jordan mode. For the numerical simulation of the conservation laws we employ a high resolution central scheme. The second order accuracy of the scheme is achieved by using MUSCL-type reconstructions and Runge-Kutta time discretizations. A constrained transport-type technique is used to enforce the geometric solenoidal constraint. The results of several numerical experiments are presented, which confirm the efficiency and robustness of the proposed numerical method and the control of the Jordan mode.