942 resultados para RARE EARTH ELEMENTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a new method for fabricating rare-earth-doped silica glasses for laser materials obtained by sintering nanoporous silica glasses impregnated with rare-earth-doped ions. The fabricated materials have no residual pores and show good optical and mechanical properties. Good performance from a Nd3+-doped silica microchip laser operating at 1.064 mum is successfully demonstrated, suggesting that the fabricated silica glasses have potential for use as active materials for high-power solid-state lasers. (C) 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopy was used to study the molecular structure of a series of selected rare earth (RE) silicate crystals including Y2SiO5 (YSO), LU2SiO5 (LSO), (Lu0.5Y0.5)(2)SiO5 (LYSO) and their ytterbium-doped samples. Raman spectra show resolved bands below 500 cm(-1) region assigned to the modes of SiO4 and oxygen vibrations. Multiple bands indicate the nonequivalence of the RE-O bonds and the lifting of the degeneracy of the RE ion vibration. Low intensity bands below 500 cm(-1) are an indication of impurities. The (SiO4)(4-) tetrahedra are characterized by bands near 200 cm(-1) which show a separation of the components of nu(4) and nu(2), in the 500-700 cm(-1) region which are attributed to the distorting bending vibration and in the 880-1000 cm(-1) region which are attributed to the symmetric and antisymmetric stretching vibrational modes. The majority of the bands in the 300-610 cm(-1) region of Re2SiO5 were found to arise from vibrations involving both Si and RE ions, indicating that there is considerable mixing of Si displacements with Si-O bending modes and RE-0 stretching modes. The Raman spectra of RE silicate crystals were analyzed in terms of the molecular structure of the crystals, which enabled separation of the bands attributed to distinct vibrational units. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several pseudo-binary RxR2-x'Fe-17 alloys (with R = Y, Ce, Pr, Gd and Dy) were synthesized with rhombohedral Th2Zn17-type crystal structure determined from x-ray and neutron powder diffraction. The choice of compositions was done with the aim of tuning the Curie temperature (T-C) in the 270 +/- 20 K temperature range, in order to obtain the maximum magneto-caloric effect around room temperature. The investigated compounds exhibit broad isothermal magnetic entropy changes, Delta S-M(T), with moderate values of the refrigerant capacity, even though the values of Delta S-M(Peak) are relatively low compared with those of the R2Fe17 compounds with R = Pr or Nd. The reduction on the Delta S-M(Peak) is explained in terms of the diminution in the saturation magnetization value. Furthermore, the Delta S-M(T) curves exhibit a similar caret-like behavior, suggesting that the magneto-caloric effect is mainly governed by the Fe-sublattice. A single master curve for Delta S-M/Delta S-M(Peak)(T) under different values of the magnetic field change are obtained for each compound by rescaling of the temperature axis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the exchange coupling theory was proposed by Kneller and Hawig in 1991 there has been a significant effort within the magnetic materials community to enhance the performance of rare earth magnets by utilising nano-composite meta-materials. Inclusions of magnetically soft iron smaller than approximately 10 nm in diameter are exchange coupled to a surrounding magnetically hard Nd2Fe14B matrix and provide an enhanced saturisation magnetisation without reducing coercivity. For such a fine nanostructure to be produced, close control over the thermal history of the material is needed. A processing route which provides this is laser annealing from an amorphous alloy precursor. In the current work, relationships between laser parameters, thermal histories of laser processed amorphous stoichiometric NdFeB ribbons and the magnetic properties of the resulting nanocrystalline products have been determined with a view to applying the process to thick film nanocomposite magnet production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and magnetic coupling properties of rare-earth metals (Gd, Nd) doped ZnO have been investigated using first-principles methods. We show that the magnetic coupling between Gd or Nd ions in the nearest neighbor sites is ferromagnetic. The stability of the ferromagnetic coupling between Gd ions can be enhanced by appropriate electron doping into ZnO Gd system and the room-temperature ferromagnetism can be achieved. However, for ZnO Nd system, the ferromagnetism between Nd ions can be enhanced by appropriate holes doping into the sample. The room-temperature ferromagnetism can also be achieved in the n-conducting ZnO Nd sample. Our calculated results are in good agreement with the conclusions of the recent experiments. The effect of native defects (V-Zn, V-O) on the ferromagnetism is also discussed. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3176490]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica spheres doped with Eu(TTFA)(3) and/or Sm(TTFA)(3) were synthesized by using the modified Stober method. The transmission electron microscope image reveals that the hybrid spheres have smooth surfaces and an average diameter of about 210 nm. Fluorescence spectrometer was used to analyze the fluorescence properties of hybrid spheres. The results show that multiple energy transfer processes are simultaneously achieved in the same samples co-doped with Eu (TTFA)(3) and Sm(TTFA)(3), namely between the ligand and Eu3+ ion, the ligand and Sm3+ ion, and Sm3+ ion and Eu3+, ion. Energy transfer of Sm3+-> Eu3+, in the hybrid spheres leads to fluorescence enhancement of Eu3+ emission by approximately an order of magnitude. The lifetimes of the hybrid spheres were also measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本论文合成了R_1Ba_2Cu_3O_(2-x) (R = La、Nd、Sm、Eu、Gd、Dr、Ho、Er、Tm、Yb)、Y_2Ba_2Cu_3O_(2-x) (x = 0.10~1.17)和Y_1Ba_2Cu_3O_(7-x)S_x (x = 0~2),并对磁性和超导电性进行了较为系统的研究。R_1Ba_2Cu_3O_(2-x)的磁化率在T > Tc的很宽的温度范围内服从Curic-Weiss定律,求得的有效磁矩略大于理论值,差值与Y_1Ba_2Cu_3O_(2-x)中Cu~(2+)磁矩相近,说明Cu~(2+)的磁矩对体系磁性有额外贡献,这贡献随R~(3+)离子中自旋平行的电子权的增多而增大。其高温下的磁化率CT > 700K)相对Curic-Weiss定律发生较大偏离,这偏离可能的来源有三个:高温下稀土离子发生较大的能级反转效应,高温下结构相变对磁性的影响,高温下氧含量减少造成Cu~(2+)磁矩增大。R_1Ba_2Cu_3O_(2-x)磁化率在T < Tc时也服从Curic-Weiss定律,R~(3+)磁矩是定域的,表明超导与磁性相互独立。互不相关,稀土磁矩与传导电子间无相互作用。用Sr取代R_1Ba_2Cu_3O_(2-x)中的Ba,没能使体系产生磁有序的变化,但却使有效磁矩增大,并完全破坏了样品的超导电性。Sm~(3+)磁化率不服从Curic-Weiss定律,在Sm_1Ba_2Cu_3O_(2-x)中Sm~(3+)显示了典型Van VlccK离子的特性。Y_1Ba_2Cu_3O_(2-x)随氧含量减少发生超导体一半导体一绝缘体的转化,当氧含量由6.90减小至6.49时发生由正交到四方的结构相变。当(7-x) = 5.83时有较多杂质相出现,123相开始分解。样品磁化率均服从Curic-Weiss定律,并随氧含量增大磁化率-温度曲线越来越趋于平缓(直线),当(7-x) = 6.90时磁化率基本不随温度变化,这时Pauli顺磁性占主导地位,这说明氧含量增加定域磁矩减少,求得的有效磁矩Peff随氧含量增大总趋势减小。提出了电子“巡游”的观点,较好地解释了上述现象,并推测出Cu(2)的d电子是离域的,对样品磁矩没有贡献,样品Peff来源于部分Cu(1)的定域Cu~(2+)的磁矩,上述推测被EPR结果证实。正交相Y_1Ba_2Cu_3O_(2-x)的EPR谱显示了中心对称成准立方晶场中Cu~(2+)(d~9, S = 1/2, I = 3/2)的EPR物性。而四方相样品的EPR谱却出现了明显的各向异性,说明观察到的为Cu(1)的EPR信号,由Cu(1)~(2+)的写域磁矩产生。Y_1Ba_2Cu_3O_(2-x)的EPR信号束源于本体相,而非Y_2Cu_2O_5、BaCuO_2、Y_2BaCuO_5等杂质相。各样品EPR信号的自旋浓度远小于1spin/cu,并随氧含量减小而增大,当(7-x) = 6.49、6.40时自旋浓度出现陡增,这时伴随由正交到四方的转化,证明了电子“巡游”观点的正确。用硫部分取代Y_1Ba_2Cu_3O_2g中的氧,当Y_1Ba_2Cu_3O_(2-x)Sx中x = 0.11时Tc = 92.6K,比Y_1Ba_2Cu_3O_(7-x)升高2K,但由于杂质相的存在,ΔTc加宽。其他样品多为半导体和绝缘体。硫取代0,当x = 0.04,0.06,0.11和1.20时磁化率服从Curic-Weiss定律,并且x = 0.87,1.2时分别在230K、240K出现反铁磁有序。其他样品由于Cu被还原为+1价而变成抗磁性。x = 0.11 (Tc = 92.6K),EPR谱为正交场中Cu~(2+)的信号。自旋浓度与温度无关。当所有Cu均为Cu~(1+)时,测问的是-s-的EPR信号,而Cu为混合价态(+1和+2时)测问是上述两种信号的叠加。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic and magnetic structures of Nd2Fe17 and Nd2Fe17N3 have been calculated using the first-principle, spin-polarized orthogonalized linear combination of atomic orbitals method. Comparative studies of the two materials reveal important effects of the nitrogen atoms (at 9e site) on the electronic and magnetic structures. Results are presented for the total density of states, site-projected partial density of states and the spin magnetic moments on four nonequivalent Fe sites. The highest magnetic moments are found to be located on the 6c site for Nd2Fe17 and on the 9d site for Nd2Fe17N3, in agreement with the neutron and Mossbauer experiments. The variation trends of the magnetic moments on different Fe sites are discussed in terms of the separation between Fe and N atoms. Compared with Nd2Fe17, an increase in the exchange splitting of the Fe d band is found in Nd2Fe17N3, which accounts for its higher Curie temperature as observed in experiments. The calculated results show that the nitrogen atoms are charge acceptors in these compounds.