937 resultados para RARE EARTH ALLOYS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic activity, thermal stability and carbon deposition of various modified NiO/gamma-Al2O3 and unmodified NiO/gamma-Al2O3 catalysts were investigated with a flow reactor, XRD, TG and UVRRS analysis. The activity and selectivity of the NiO/gamma-Al2O3 catalyst showed little difference from those of the modified nickel-based catalysts. However, modification with alkali metal oxide (Li, Na, K) and rare earth metal oxide (La, Ce, Y, Sm) can improve the thermal stability of the NiO/gamma-Al2O3 and enhance its ability to suppress carbon deposition during the partial oxidation of ethane (POE). The carbon deposition contains graphite-like species that were detected by UVRRS. The nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide have excellent catalytic activities (C2H6 conversion of similar to 100%, CO selectivity of similar to 94%, 7x 10(4) l/(kg h), 1123 K), good thermal stability and carbon-deposition resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissolution process of metal complexes in ionic liquids was investigated by a multiple-technique approach to reveal the solvate species of the metal in solution. The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) is able to dissolve stoichiometric amounts of the oxides of the rare-earth elements. The crystal structures of the compounds [Eu-2(bet)(8)(H2O)(4)][Tf2N](6), [Eu-2(bet)(8)(H2O)(2)][Tf2N](6)center dot 2H(2)O, and [Y-2(bet)(6)(H2O)(4)][Tf2N](6) were found to consist of dimers. These rare-earth complexes are well soluble in the ionic liquids [Hbet][Tf2N] and [C(4)mim]- [Tf2N] (C(4)mim = 1-butyl-3-methylimidazolium). The speciation of the metal complexes after dissolution in these ionic liquids was investigated by luminescence spectroscopy, H-1, C-13, and Y-89 NMR spectroscopy, and by the synchrotron techniques EXAFS (extended X-ray absorption fine structure) and HEXS (high-energy X-ray scattering). The combination of these complementary analytical techniques reveals that the cationic dimers decompose into monomers after dissolution of the complexes in the ionic liquids. Deeper insight into the solution processes of metal compounds is desirable for applications of ionic liquids in the field of electrochemistry, catalysis, and materials chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ferrocene-derivatives bis(ferrocenyl-ethynyl)-1,10-phenanthroline (Fc(2)phen) and ferrocenoyltrifluoroacetone (Hfta) have been used to synthesize ferrocene-containing rare-earth beta-diketonate complexes. The complexes [Ln(tta)(3)(Fc(2)phen)] and [Ln(fta)(3)(phen)] (where Ln = La, Nd, Eu, Yb) show structural similarities to the tris(2-thenoyltrifluoroacetonate)(1,10-phenanthroline)lanthanide(III) complexes, [Ln(tta)(3)(phen)]. The coordination number of the lanthanide ion is 8, and the coordination sphere can be described as a distorted dodecahedron. However, the presence of the ferrocene moieties shifts the ligand absorption bands of the rare-earth complexes to longer wavelengths so that the complexes can be excited not only by ultraviolet radiation but also by visible light of wavelengths up to 420 nm. Red photoluminescence is observed for the europium(III) complexes and near-infrared photoluminescence for the neodymium(III) and ytterbium(III) complexes. The presence of the ferrocene groups makes the rare-earth complexes hydrophobic and well-soluble in apolar organic solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-soluble, stable, and easily synthesizable 1:4 complexes of rare-earth ions with 8-hydroxy-5-nitroquinolinate ligands have been prepared. These complexes can be sensitized by visible light with wavelengths up to 480 nm and show near-infrared emission in aqueous solution. The incorporation of a nitro group in the quinoline moiety shifts its absorption bands to longer wavelengths and also increases its molar absorptivity by a factor of 2.5, thereby significantly enhancing its light-harvesting power. The presence of the nitro group also increases the solubility of the resulting complexes, making them water-soluble. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique absorption properties of the 9-hydroxyphenalen-1-one (HPHN) ligand have been exploited to obtain visible-light-sensitizable rare-earth complexes in 1: 3 and 1: 4 metal-to-ligand ratios. In both stoichiometries (1:3,tris,Ln(PHN)3;1:4, tetrakis, A[ Ln( PHN)(4)], with Ln being a trivalent rare-earth ion and A being a monovalent cation), the complexes of Nd(III),Er( III), and Yb(III) show typical near-infrared luminescence upon excitation with visible light with wavelengths up to 475 nm. The X-ray crystal structures of the tris complexes show solvent coordination to the central rare-earth ion, whereas in the tetrakis complexes, the four PHN-ligands form a protective shield around the central ion, preventing small solvent molecules from coordinating to the rare-earth ion, at least in the solid state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near-infrared-emitting rare-earth chelates based on 8-hydroxyquinoline have appeared frequently in recent literature, because they are promising candidates for active components in near-infrared-luminescent optical devices, such as optical amplifiers, organic light-emitting diodes, .... Unfortunately, the absence of a full structural investigation of these rare-earth quinolinates is hampering the further development of rare-earth quinolinate based materials, because the luminescence output cannot be related to the structural properties. After an elaborate structural elucidation of the rare-earth quinolinate chemistry we can conclude that basically three types of structures can be formed, depending on the reaction conditions: tris complexes, corresponding to a 1:3 metal-to-ligand ratio, tetrakis complexes, corresponding to a 1:4 metal-to-ligand ratio, and trimeric complexes, with a 3:8 metal-to-ligand ratio. The intensity of the emitted near-infrared luminescence of the erbium(Ill) complexes is highest for the tetrakis complexes of the dihalogenated 8-hydroxyquinolinates.