992 resultados para RANS (Reynolds-Averaged Navier-Stokes)
Resumo:
In the present work, we expanded the study done by Solorzanol(1) including the eccentricity of the perturbing body. The assumptions used to develop the single-averaged analytical model are the same ones of the restricted elliptic three-body problem. The disturbing function was expanded in Legendre polynomials up to fourth-order. After that, the equations of motion are obtained from the planetary equations and we performed a set of numerical simulations. Different initial eccentricities for the perturbing and perturbed body are considered. The results obtained perform an analysis of the stability of a near-circular orbits and investigate under which conditions this orbit remain near-circular.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work was carried out with Psychotria ipecacuanha, a Brazilian medicinal plant the roots of which contain emetine. The main objective was to develop a protocol for the micro-propagation of these species, by testing different culture techniques, the temporary immersion system, and the semi-solid and liquid media systems. In the semi-solid system, experiments were developed in flasks of two different sizes containing MS, B5, and WP media to which were added different growth regulators. Innoculum density was also evaluated. The liquid medium system consisted of MS medium supplemented with different growth regulators. For the temporary immersion system, the MS medium received an addition of 1.5mg/L BAP and 0.5mg/L GA3, and a reverse digital apparatus and vacuum pump were used. The liquid medium system with MS medium supplemented with 1.5mg/L BAP and 0.5mg/L GA3 presented the best results for shoot proliferation in a period of 30 days in culture (2.37 ± 0.32 shoots/explant). Cultures carried out for 90 days in the semi-solid system, using 8.5 × 5.5cm flasks and 3 explants per flask, developed 1.80 ± 0.20 shoots/explant, achieving 3.06 ± 0.51 cm of height adn presented superior survival ratio (96%). Explants cultured in temporary immersion system for 90 days showed 2.30 ± 1.10 shoots/explant achieving a growth of 2.08 ± 0.12 cm and 52% survival.
Resumo:
A low-Reynolds-number k-ω model for Newtonian fluids has been developed to predict drag reduction of viscoelastic fluids described by the FENE-P model. The model is an extension to viscoelastic fluids of the model for Newtonian fluids developed by Bredberg et al. (Int J Heat Fluid Flow 23:731-743, 2002). The performance of the model was assessed using results from direct numerical simulations for fully developed turbulent channel flow of FENE-P fluids. It should only be used for drag reductions of up to 50 % (low and intermediate drag reductions), because of the limiting assumption of turbulence isotropy leading to an under-prediction of k, but compares favourably with results from k-ε models in the literature based on turbulence isotropy. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A second-order closure is developed for predicting turbulent flows of viscoelastic fluids described by a modified generalised Newtonian fluid model incorporating a nonlinear viscosity that depends on a strain-hardening Trouton ratio as a means to handle some of the effects of viscoelasticity upon turbulent flows. Its performance is assessed by comparing its predictions for fully developed turbulent pipe flow with experimental data for four different dilute polymeric solutions and also with two sets of direct numerical simulation data for fluids theoretically described by the finitely extensible nonlinear elastic - Peterlin model. The model is based on a Newtonian Reynolds stress closure to predict Newtonian fluid flows, which incorporates low Reynolds number damping functions to properly deal with wall effects and to provide the capability to handle fluid viscoelasticity more effectively. This new turbulence model was able to capture well the drag reduction of various viscoelastic fluids over a wide range of Reynolds numbers and performed better than previously developed models for the same type of constitutive equation, even if the streamwise and wall-normal turbulence intensities were underpredicted.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of the present study was to evaluate the influence of seasonality on the behavior of phytoplankton associations in eutrophic reservoirs with different depths in northeastern Brazil. Five collections were carried out at each of the reservoirs at two depths (0.1 m and near the sediment) at three-month intervals in each season (dry and rainy). The phytoplankton samples were preserved in Lugol's solution and quantified under an inverted microscope for the determination of density values, which were subsequently converted to biomass values based on cellular biovolume and classified in phytoplankton associations. The following abiotic variables were analyzed: water temperature, dissolved oxygen, pH, turbidity, water transparency, total phosphorus, total dissolved phosphorus, orthophosphate and total nitrogen. The data were investigated using canonical correspondence analysis. The influence of seasonality on the dynamics of the phytoplankton community was lesser in the deeper reservoirs. Depth affected the behavior of the algal associations. Variation in light availability was a determinant of changes in the phytoplankton structure. Urosolenia and Anabaena associations were more abundant in shallow ecosystems with a larger eutrophic zone, whereas the Microcystis association was more related to deep ecosystems with adequate availability of nutrients. The distribution of Cyclotella, Geitlerinema, Planktothrix, Pseudanabaena and Cylindrospermopsis associations was different from that seen in subtropical regions and the substitution of these associations was related to a reduction in the eutrophic zone rather than the mixture zone. Published by Elsevier GmbH.
Resumo:
The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped.
Resumo:
A detailed numerical simulation of ethanol turbulent spray combustion on a rounded jet flame is pre- sented in this article. The focus is to propose a robust mathematical model with relatively low complexity sub- models to reproduce the main characteristics of the cou- pling between both phases, such as the turbulence modulation, turbulent droplets dissipation, and evaporative cooling effect. A RANS turbulent model is implemented. Special features of the model include an Eulerian– Lagrangian procedure under a fully two-way coupling and a modified flame sheet model with a joint mixture fraction– enthalpy b -PDF. Reasonable agreement between measured and computed mean profiles of temperature of the gas phase and droplet size distributions is achieved. Deviations found between measured and predicted mean velocity profiles are attributed to the turbulent combustion modeling adopted
Resumo:
Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.
Resumo:
A numerical study using Large Eddy Simulation Coherent Structure Model (LES-CSM), of the flow around a simplified Ahmed body, has been done in this work of thesis. The models used are two salient geometries from the experimental investigation performed in [1], and consist, in particular, in two notch-back body geometries. Six simulation are carried out in total, changing Reynolds number and back-light angle of the model’s rear part. The Reynolds numbers used, based on the height of the models and the free stream velocity, are Re = 10000, Re = 30000 and Re = 50000. The back-light angles of the slanted surface with respect to the horizontal roof surface, that characterizes the vehicle, are taken as B = 31.8◦ and B = 42◦ respectively. The experimental results in [1] have shown that, depending on the parameter B, asymmetric and symmetric averaged flow over the back-light and in the wake for a symmetric geometry can be observed. The aims of the present work of master thesis are principally two. The first aim is to investigate and confirm the influence of the parameter B on the presence of the asymmetry of the averaged flow, and confirm the features described in the experimental results. The second important aspect is to investigate and observe the influence of the second variable, the Reynolds number, in the developing of the asymmetric flow itself. The results have shown the presence of the mentioned asymmetry as well as an influence of the Reynolds number on it.