985 resultados para R-matrix theory
Resumo:
Differential axial shortening in vertical members of reinforced concrete high-rise buildings occurs due to shrinkage, creep and elastic shortening, which are time dependent effects of concrete. This has to be quantified in order to make adequate provisions and mitigate its adverse effects. This paper presents a novel procedure for quantifying the axial shortening of vertical members using the variations in vibration characteristics of the structure, in lieu of using gauges which can pose problems in use during and after the construction. This procedure is based on the changes in the modal flexiblity matrix which is expressed as a function of the mode shapes and the reciprocal of the natural frequencies. This paper will present the development of this novel procedure.
Resumo:
During wound repair, the balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs) is crucial for the normal extra cellular matrix turnover. However, the over expression of several MMPs including MMP-1, 2, 3, 8, 9 and MMP-10, combined with abnormally high levels of activation or low expression of TIMPs, may contribute to excessive degradation of connective tissue and formation of chronic ulcers. There are many groups exploring strategies for promoting wound healing involving delivery of growth factors, cells, ECM components and small molecules. Our approach for improving the balance of MMPs is not to add anything more to the wound, but instead to neutralise the over-expressed MMPs using inhibitors tethered to a bandage-like hydrogel. Our in vitro experiments using designed synthetic pseudo peptide inhibitors have been demonstrated to inhibit MMP activity in standard solutions. These inhibitors have also been tethered to polyethylene glycol hydrogels using a facile reaction between the linker unit on the inhibitor and the gel. After tethering the inhibition of MMPs diminishes to some extent and we postulate that this arises due to poor diffusion of the MMPs into the gels. When the tethered inhibitors were tested against chronic wound fluid obtained against patients we observed over 40% inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.
Resumo:
Successful wound repair and normal turnover of the extracellular matrix relies on a balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs). When over-expression of MMPs and abnormally high levels of activation or low expression of TIMPs are encountered, excessive degradation of connective tissue and the formation of chronic ulcers can occur. One strategy to rebalance MMPs and TIMPs is to use inhibitors. We have designed a synthetic pseudopeptide inhibitor with an amine linker group based on a known high-affinity peptidomimetic MMP inhibitor have demonstrated inhibition of MMP-1, -2, -3 and -9 activity in standard solutions. The inhibitor was also tethered to a polyethylene glycol hydrogel using a facile reaction between the linker unit on the inhibitor and the hydrogel precursors. After tethering, we observed inhibition of the MMPs although there was an increase in the IC50s which was attributed to poor diffusion of the MMPs into the hydrogels, reduced activity of the tethered inhibitor or incomplete incorporation of the inhibitor into the hydrogels. When the tethered inhibitors were tested against chronic wound fluid we observed significant inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.
Resumo:
A consistent finding in the literature is that males report greater usage of drugs and subsequently greater amounts of drug driving. Research also suggests that vicarious influences may be more pertinent to males than to females. Utilising Stafford and Warr’s (1993) reconceptualization of deterrence theory, this study sought to determine if the relative deterrent impact of zero-tolerance drug driving laws is disparate between genders. A sample of motorists’ (N = 899) completed a self-report questionnaire assessing participants frequency of drug driving and personal and vicarious experiences with punishment and punishment avoidance. Results show that males were significantly more likely to report future intentions of drug driving. Additionally, vicarious experiences of punishment avoidance was a more influential predictor of future drug driving instances for males with personal experiences of punishment avoidance a more influential predictor for females. These findings can inform gender sensitive media campaigns and interventions for convicted drug drivers.
Resumo:
Osteoarthritis (OA) is a chronic, non-inflammatory type of arthritis, which usually affects the movable and weight bearing joints of the body. It is the most common joint disease in human beings and common in elderly people. Till date, there are no safe and effective diseases modifying OA drugs (DMOADs) to treat the millions of patients suffering from this serious and debilitating disease. However, recent studies provide strong evidence for the use of mesenchymal stem cell (MSC) therapy in curing cartilage related disorders. Due to their natural differentiation properties, MSCs can serve as vehicles for the delivery of effective, targeted treatment to damaged cartilage in OA disease. In vitro, MSCs can readily be tailored with transgenes with anti-catabolic or pro-anabolic effects to create cartilage-friendly therapeutic vehicles. On the other hand, tissue engineering constructs with scaffolds and biomaterials holds promising biological cartilage therapy. Many of these strategies have been validated in a wide range of in vitro and in vivo studies assessing treatment feasibility or efficacy. In this review, we provide an outline of the rationale and status of stem-cell-based treatments for OA cartilage, and we discuss prospects for clinical implementation and the factors crucial for maintaining the drive towards this goal.
Resumo:
This paper discusses a current research project building new understandings and knowledge relevant to R&D funding strategies in Australia. Building on a retrospective analysis of R&D trends and industry outcomes, an industry roadmap will be developed to inform R&D policies more attuned to future industry needs to improve research investment effectiveness. The project will also include analysis of research team formation and management (involving end users from public and private sectors together with research and knowledge institutions), and dissemination of outcomes and uptake in the Australian building and construction industry. The project will build on previous research extending open innovation system theory and network analysis and procurement, focused on R&D. Through the application of dynamic capabilities and strategic foresighting theory, an industry roadmap for future research investment will be developed, providing a stronger foundation for more targeted policy recommendations. This research will contribute to more effective construction processes in the future through more targeted research funding and more effective research partnerships between industry and researchers.
Resumo:
The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.
Resumo:
Using a thematic story telling approach which draws on ethnographic method, a grounded theory of protest movement continuity is presented. The grounded theory draws from theories and activist stories relating to the facilitative role of movement networks, social contagion theory and the cultural experience of activism. It highlights the contagious influence of protest networks in maintaining protest continuity over time and how this leads to common perceptions of development risk and opportunity within communities. It also reveals how communities use collective values and identity, social capital, emotional dynamics and symbolic artifacts to maintain protest continuity.
Resumo:
An extended theory of planned behavior (TPB) was used to predict young people’s intentions to donate money to charities in the future. Students (N = 210; 18-24 years) completed a questionnaire assessing their attitude, subjective norm, perceived behavioral control [PBC], moral obligation, past behavior and intentions toward donating money. Regression analyses revealed the extended TPB explained 61% of the variance in intentions to donate money. Attitude, PBC, moral norm, and past behavior predicted intentions, representing future targets for charitable giving interventions.
Resumo:
This volume aims to 'bring the state back into terrorism studies' and fill the notable gap that currently exists in our understanding of the ways in which states employ terrorism as a political strategy of internal governance or foreign policy. Within this broader context, the volume has a number of specific aims. First, it aims to make the argument that state terrorism is a valid and analytically useful concept which can do much to illuminate our understanding of state repression and governance, and illustrate the varieties of actors, modalities, aims, forms, and outcomes of this form of contemporary political violence. Secondly, by discussing a rich and diverse set of empirical case studies of contemporary state terrorism this volume explores and tests theoretical notions, generates new questions and provides a resource for further research. Thirdly, it contributes to a critical-normative approach to the study of terrorism more broadly and challenges dominant approaches and perspectives which assume that states, particularly Western states, are primarily victims and not perpetrators of terrorism. Given the scarceness of current and past research on state terrorism, this volume will make a genuine contribution to the wider field, particularly in terms of ongoing efforts to generate more critical approaches to the study of political terrorism. This book will be of much interest to students of critical terrorism studies, critical security studies, terrorism and political violence and political theory in general.
Resumo:
The study of matrices of rare Type 4 carbonaceous chondrites can reveal important information on parent body rnetamorp~ic processes and provide a comparison with processes on parent bodies of ordinary chc-idrites. Reflectance spectra (Tholen, 1984) from the two largest asteroids in the asteroid belt, Ceres and Pallas, suggest that they may be metamorphosed carbonaceous chondrites. These two asteroids constitute - onethird of the mass in the asteroid belt implying that type 4-6 carbonaceous chondrites are poorly represented in the meteorite collection and may be of considerable importance. The matrix of the C4 chondrite Karoonda has been investigated using a JEOL 2000FX analytical electron microscope (AEM) with an attached Tracor-Northem TN5500 energy dispersive spectrometer (EDS). In previous studies (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969), the petrography of the Karoonda matrix has been described as consisting largely of coarse-grained (50-200 urn in size) olivine and plagioclase (20-100 um in size), associated with micrometer sized magnetite and rare sulphides. AEM observations on matrix show that in addition to these large grains, there is a significant fraction (10 vol%) of interstitial fine grained phases « 5 urn). The mineralogy of these fine-grained phases differs in some respects from that of the coarser-grained matrix identified by optical and SEM techniques (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969). I~ particular crystals of two compositionally distinct pyroxenes « 2 urn in size) have been identified which have not been previously observed in Karoonda by other analytical techniques. Thin film microanalyses (Mackinnon et al., 1986) of these two pyroxenes indicate compositions consistent with augite and low-Ca pyroxene (- Fs27). Fine-grained anhedral olivine « 2 urn size) is the most abundant phase with composition -Fa29' This composition is essentially indistinguishable from that determined for coarser-grained matrix olivines using an electron microprobe (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969). All olivines are associated with subhedral magnetites « 1 urn size) which contain significant Cr (- 2%) and Al (- 1%) as was also noted for larger sized Karoonda magnetites by Delaney et al. (1985). It has recently been suggested (Burgess et al., 1987) on the basis of sulphur release profiles for S-isotope analyses of Karoonda that CaS04 (anhydrite) may be present. However, no sulphate phase has, as yet, been identified in the matrix of Karoonda. Low magnification contrast images suggest that Karoonda may have a significant porosity within the fine-grained matrix fraction. Most crystals are anhedral and do not show evidence for significant compaction. Individual grains often show single point contact with other grains which result in abundant intergranular voids. These voids frequently contain epoxy which was used as part of the specimen preparation procedure due to the friable nature of the bulk sample.
Resumo:
The R statistical environment and language has demonstrated particular strengths for interactive development of statistical algorithms, as well as data modelling and visualisation. Its current implementation has an interpreter at its core which may result in a performance penalty in comparison to directly executing user algorithms in the native machine code of the host CPU. In contrast, the C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic statistical algorithms; however, user programs are converted to high-performance machine code, ahead of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework, allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms from R to C++ becomes straightforward. The algorithms retains the overall structure as well as readability, all while maintaining a bidirectional link with the host R environment. Empirical timing comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several orders of magnitude.