943 resultados para Quality models
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Background: Hospital performance reports based on administrative data should distinguish differences in quality of care between hospitals from case mix related variation and random error effects. A study was undertaken to determine which of 12 diagnosis-outcome indicators measured across all hospitals in one state had significant risk adjusted systematic ( or special cause) variation (SV) suggesting differences in quality of care. For those that did, we determined whether SV persists within hospital peer groups, whether indicator results correlate at the individual hospital level, and how many adverse outcomes would be avoided if all hospitals achieved indicator values equal to the best performing 20% of hospitals. Methods: All patients admitted during a 12 month period to 180 acute care hospitals in Queensland, Australia with heart failure (n = 5745), acute myocardial infarction ( AMI) ( n = 3427), or stroke ( n = 2955) were entered into the study. Outcomes comprised in-hospital deaths, long hospital stays, and 30 day readmissions. Regression models produced standardised, risk adjusted diagnosis specific outcome event ratios for each hospital. Systematic and random variation in ratio distributions for each indicator were then apportioned using hierarchical statistical models. Results: Only five of 12 (42%) diagnosis-outcome indicators showed significant SV across all hospitals ( long stays and same diagnosis readmissions for heart failure; in-hospital deaths and same diagnosis readmissions for AMI; and in-hospital deaths for stroke). Significant SV was only seen for two indicators within hospital peer groups ( same diagnosis readmissions for heart failure in tertiary hospitals and inhospital mortality for AMI in community hospitals). Only two pairs of indicators showed significant correlation. If all hospitals emulated the best performers, at least 20% of AMI and stroke deaths, heart failure long stays, and heart failure and AMI readmissions could be avoided. Conclusions: Diagnosis-outcome indicators based on administrative data require validation as markers of significant risk adjusted SV. Validated indicators allow quantification of realisable outcome benefits if all hospitals achieved best performer levels. The overall level of quality of care within single institutions cannot be inferred from the results of one or a few indicators.
Resumo:
Understanding the contribution of marketing to economic and social outcomes is fundamental to broadening the focus of marketing. The authors develop a comprehensive model that integrates the impact of service quality and service satisfaction on both economic and societal outcomes. The model is validated using two random samples involving intensive health services. The results indicate that service quality and service satisfaction significantly enhance quality of life and behavioral intentions, highlighting that customer service has social as well as economic outcomes. This is an important finding given the movement toward recognizing social and environmental outcomes, such as emphasized through triple bottom-line reporting. The findings have important implications for managing service processes, for improving the quality of life of customers, and for enhancing customers' behavioral intentions toward the organization.
Resumo:
The schema of an information system can significantly impact the ability of end users to efficiently and effectively retrieve the information they need. Obtaining quickly the appropriate data increases the likelihood that an organization will make good decisions and respond adeptly to challenges. This research presents and validates a methodology for evaluating, ex ante, the relative desirability of alternative instantiations of a model of data. In contrast to prior research, each instantiation is based on a different formal theory. This research theorizes that the instantiation that yields the lowest weighted average query complexity for a representative sample of information requests is the most desirable instantiation for end-user queries. The theory was validated by an experiment that compared end-user performance using an instantiation of a data structure based on the relational model of data with performance using the corresponding instantiation of the data structure based on the object-relational model of data. Complexity was measured using three different Halstead metrics: program length, difficulty, and effort. For a representative sample of queries, the average complexity using each instantiation was calculated. As theorized, end users querying the instantiation with the lower average complexity made fewer semantic errors, i.e., were more effective at composing queries. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background: The structure of proteins may change as a result of the inherent flexibility of some protein regions. We develop and explore probabilistic machine learning methods for predicting a continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue. We train our methods using data derived from high-quality NMR models. Results: Several probabilistic models not only successfully estimate the continuum secondary structure, but also provide a categorical output on par with models directly trained on categorical data. Importantly, models trained on the continuum secondary structure are also better than their categorical counterparts at identifying the conformational state for structurally ambivalent residues. Conclusion: Cascaded probabilistic neural networks trained on the continuum secondary structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an overall classification accuracy on par with standard, categorical prediction methods.
Resumo:
Predicting the various responses of different species to changes in landscape structure is a formidable challenge to landscape ecology. Based on expert knowledge and landscape ecological theory, we develop five competing a priori models for predicting the presence/absence of the Koala (Phascolarctos cinereus) in Noosa Shire, south-east Queensland (Australia). A priori predictions were nested within three levels of ecological organization: in situ (site level) habitat (< 1 ha), patch level (100 ha) and landscape level (100-1000 ha). To test the models, Koala surveys and habitat surveys (n = 245) were conducted across the habitat mosaic. After taking into account tree species preferences, the patch and landscape context, and the neighbourhood effect of adjacent present sites, we applied logistic regression and hierarchical partitioning analyses to rank the alternative models and the explanatory variables. The strongest support was for a multilevel model, with Koala presence best predicted by the proportion of the landscape occupied by high quality habitat, the neighbourhood effect, the mean nearest neighbour distance between forest patches, the density of forest patches and the density of sealed roads. When tested against independent data (n = 105) using a receiver operator characteristic curve, the multilevel model performed moderately well. The study is consistent with recent assertions that habitat loss is the major driver of population decline, however, landscape configuration and roads have an important effect that needs to be incorporated into Koala conservation strategies.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
There is growing interest in the use of context-awareness as a technique for developing pervasive computing applications that are flexible, adaptable, and capable of acting autonomously on behalf of users. However, context-awareness introduces a variety of software engineering challenges. In this paper, we address these challenges by proposing a set of conceptual models designed to support the software engineering process, including context modelling techniques, a preference model for representing context-dependent requirements, and two programming models. We also present a software infrastructure and software engineering process that can be used in conjunction with our models. Finally, we discuss a case study that demonstrates the strengths of our models and software engineering approach with respect to a set of software quality metrics.
Resumo:
Broccoli is a vegetable crop of increasing importance in Australia, particularly in south-east Queensland and farmers need to maintain a regular supply of good quality broccoli to meet the expanding market. A predictive model of ontogeny, incorporating climatic data including frost risk, would enable farmers to predict harvest maturity date and select appropriate cultivar – sowing date combinations. To develop procedures for predicting ontogeny, yield and quality, field studies using three cultivars, ‘Fiesta’, ‘Greenbelt’ and ‘Marathon’, were sown on eight dates from 11 March to 22 May 1997, and grown under natural and extended (16 h) photoperiods at the University of Queensland, Gatton Campus. Cultivar, rather than the environment, mainly determined head quality attributes of head shape and branching angle. Yield and quality were not influenced by photoperiod. A better understanding of genotype and environmental interactions will help farmers optimise yield and quality, by matching cultivars with time of sowing. The estimated base and optimum temperature for broccoli development were 0°C and 20 °C, respectively, and were consistent across cultivars, but thermal time requirements for phenological intervals were cultivar specific. Differences in thermal time requirement from floral initiation to harvest maturity between cultivars were small and of little importance, but differences in thermal time requirement from emergence to floral initiation were large. Sensitivity to photoperiod and solar radiation was low in the three cultivars used. This research has produced models to assist broccoli farmers in crop scheduling and cultivar selection in south-east Queensland.
Resumo:
Even when data repositories exhibit near perfect data quality, users may formulate queries that do not correspond to the information requested. Users’ poor information retrieval performance may arise from either problems understanding of the data models that represent the real world systems, or their query skills. This research focuses on users’ understanding of the data structures, i.e., their ability to map the information request and the data model. The Bunge-Wand-Weber ontology was used to formulate three sets of hypotheses. Two laboratory experiments (one using a small data model and one using a larger data model) tested the effect of ontological clarity on users’ performance when undertaking component, record, and aggregate level tasks. The results indicate for the hypotheses associated with different representations but equivalent semantics that parsimonious data model participants performed better for component level tasks but that ontologically clearer data model participants performed better for record and aggregate level tasks.
Resumo:
Much of the geometrical data relating to engineering components and assemblies is stored in the form of orthographic views, either on paper or computer files. For various engineering applications, however, it is necessary to describe objects in formal geometric modelling terms. The work reported in this thesis is concerned with the development and implementation of concepts and algorithms for the automatic interpretation of orthographic views as solid models. The various rules and conventions associated with engineering drawings are reviewed and several geometric modelling representations are briefly examined. A review of existing techniques for the automatic, and semi-automatic, interpretation of engineering drawings as solid models is given. A new theoretical approach is then presented and discussed. The author shows how the implementation of such an approach for uniform thickness objects may be extended to more general objects by introducing the concept of `approximation models'. Means by which the quality of the transformations is monitored, are also described. Detailed descriptions of the interpretation algorithms and the software package that were developed for this project are given. The process is then illustrated by a number of practical examples. Finally, the thesis concludes that, using the techniques developed, a substantial percentage of drawings of engineering components could be converted into geometric models with a specific degree of accuracy. This degree is indicative of the suitability of the model for a particular application. Further work on important details is required before a commercially acceptable package is produced.