992 resultados para QED RADIATIVE-CORRECTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This issue review provides information on the Department of Corrections construction and of proposed staffing for additional beds in the prison system and community-based corrections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combined report on the institutions under the control of the Iowa Department of Corrections for the five years ended June 30, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Department of Corrections has been actively engaged in strategic planning since 2004. This plan reflects the Department’s effort to align its activities and operations with the Governor’s Leadership Agenda and the principles of Accountable Government.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Department of Corrections has been actively engaged in strategic planning since 2004. This plan reflects the Department’s effort to align its activities and operations with the Governor’s Leadership Agenda and the principles of Accountable Government.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through micrometric gaps regardless of geometrical configurations and distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iowa’s adult correctional system carries out its legal mandate of protecting the public and promoting offender rehabilitation through a continuum of institution and community evidence based services and interventions. This continuum is designed with recognition that for most offenders, reentry planning starts upon admission to the corrections system. The effective and efficient management of offenders in accordance with their risk and carcinogenic needs (those needs that contribute to criminality) is accomplished through targeted programming, release preparation, and transition services. Success in these endeavors assists offenders to become productive members of the community and makes it less likely that they will re-offend, resulting in lowered recidivism rates. In 1990 the Department’s prison recidivism rate was 44.7% and today it is 30.3%. Our overall desired outcome is to reduce the prison recidivism rate to 25% during the next five years by focusing resources toward our highest risk offenders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Corrections audit report for the year ended June 30, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Corrections audit report for the year ended June 30, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In lentic water bodies, such as lakes, the water temperature near the surface typically increases during the day, and decreases during the night as a consequence of the diurnal radiative forcing (solar and infrared radiation). These temperature variations penetrate vertically into the water, transported mainly by heat conduction enhanced by eddy diffusion, which may vary due to atmospheric conditions, surface wave breaking, and internal dynamics of the water body. These two processes can be described in terms of an effective thermal diffusivity, which can be experimentally estimated. However, the transparency of the water (depending on turbidity) also allows solar radiation to penetrate below the surface into the water body, where it is locally absorbed (either by the water or by the deployed sensors). This process makes the estimation of effective thermal diffusivity from experimental water temperature profiles more difficult. In this study, we analyze water temperature profiles in a lake with the aim of showing that assessment of the role played by radiative forcing is necessary to estimate the effective thermal diffusivity. To this end we investigate diurnal water temperature fluctuations with depth. We try to quantify the effect of locally absorbed radiation and assess the impact of atmospheric conditions (wind speed, net radiation) on the estimation of the thermal diffusivity. The whole analysis is based on the results of fiber optic distributed temperature sensing, which allows unprecedented high spatial resolution measurements (∼4 mm) of the temperature profile in the water and near the water surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common belief is that further quantum corrections near the singularity of a large black hole should not substantially modify the semiclassical picture of black hole evaporation; in particular, the outgoing spectrum of radiation should be very close to the thermal spectrum predicted by Hawking. In this paper we explore a possible counterexample: in the context of dilaton gravity, we find that nonperturbative quantum corrections which are important in strong-coupling regions may completely alter the semiclassical picture, to the extent that the presumptive spacelike boundary becomes timelike, changing in this way the causal structure of the semiclassical geometry. As a result, only a small fraction of the total energy is radiated outside the fake event horizon; most of the energy comes in fact at later retarded times and there is no problem of information loss. This may constitute a general characteristic of quantum black holes, that is, quantum gravity might be such as to prevent the formation of global event horizons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoantennae show potential for photosynthesis research for two reasons; first by spatially confining light for experiments which require high spatial resolution, and second by enhancing the photon emission of single light-harvesting complexes. For effective use of nanoantennae a detailed understanding of the interaction between the nanoantenna and the light-harvesting complex is required. Here we report how the excitation and emission of multiple purple bacterial LH2s (light-harvesting complex 2) are controlled by single gold nanorod antennae. LH2 complexes were chemically attached to such antennae, and the antenna length was systematically varied to tune the resonance with respect to the LH2 absorption and emission. There are three main findings. (i) The polarization of the LH2 emission is fully controlled by the resonant nanoantenna. (ii) The largest fluorescence enhancement, of 23 times, is reached for excitation with light at λ = 850 nm, polarized along the long antenna-axis of the resonant antenna. The excitation enhancement is found to be 6 times, while the emission efficiency is increased 3.6 times. (iii) The fluorescence lifetime of LH2 depends strongly on the antenna length, with shortest lifetimes of [similar]40 ps for the resonant antenna. The lifetime shortening arises from an 11 times resonant enhancement of the radiative rate, together with a 2–3 times increase of the non-radiative rate, compared to the off-resonant antenna. The observed length dependence of radiative and non-radiative rate enhancement is in good agreement with simulations. Overall this work gives a complete picture of how the excitation and emission of multi-pigment light-harvesting complexes are influenced by a dipole nanoantenna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Better models are needed for radiative heat transfer in boiler furnaces. If the process is known better, combustion in the furnace can be optimized to produce low emissions. It makes the process to be environmental friendly. Furthermore, if there is a better model of the furnace it can more fully explain what is happening inside the furnace. Using of the model one can quickly and easily analyze how it operates with bio fuels, moist fuels or difficult fuels and improve the operation. Models helps with better estimation of furnace dimensions and result in more accurate understanding of operation. Key component lacking in these models is radiative heat transfer in particle laden gases. If there are no particles than radiative heat transfer can be calculated approximately. There are two problems with current models when used with flow modeling. The first one is a need to account for a particle laden gas and the second one is an absence of a fast algorithm. Fast calculation is needed if radiative heat transfer calculation is done for a large CDF model. Computations slow down if time is required for calculating radiative properties over and over again. This thesis presents a band model for radiative heat transfer in boiler furnaces. Advantage is a quickness of calculation and account of particles in the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We model the wavelength-dependent absorption of atmospheric gases by assuming constant mass absorption coefficients in finite-width spectral bands. Such a semigray atmosphere is analytically solved by a discrete ordinate method. The general solution is analyzed for a water vapor saturated atmosphere that also contains a carbon dioxide-like absorbing gas in the infrared. A multiple stable equilibrium with a relative upper limit in the outgoing long-wave radiation is found. Differing from previous radiative–convective models, we find that the amount of carbon dioxide strongly modifies the value of this relative upper limit. This result is also obtained in a gray (i.e., equal absorption of radiation at all infrared wavelengths) water vapor saturated atmosphere. The destabilizing effect of carbon dioxide implies that massive carbon dioxide atmospheres are more likely to reach a runaway greenhouse state than thin carbon dioxide ones