930 resultados para Pseudomonotone Generalized Directional Derivative
Resumo:
The determination of the minimum size of a k-neighborhood (i.e., a neighborhood of a set of k nodes) in a given graph is essential in the analysis of diagnosability and fault tolerance of multicomputer systems. The generalized cubes include the hypercube and most hypercube variants as special cases. In this paper, we present a lower bound on the size of a k-neighborhood in n-dimensional generalized cubes, where 2n + 1 <= k <= 3n - 2. This lower bound is tight in that it is met by the n-dimensional hypercube. Our result is an extension of two previously known results. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A novel radix-3/9 algorithm for type-III generalized discrete Hartley transform (GDHT) is proposed, which applies to length-3(P) sequences. This algorithm is especially efficient in the case that multiplication is much more time-consuming than addition. A comparison analysis shows that the proposed algorithm outperforms a known algorithm when one multiplication is more time-consuming than five additions. When combined with any known radix-2 type-III GDHT algorithm, the new algorithm also applies to length-2(q)3(P) sequences.
Resumo:
In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.
Resumo:
Purpose – While Freeman's stakeholder management approach has attracted much attention from both scholars and practitioners, little empirical work has considered the interconnectedness of organisational perspectives and stakeholder perspectives. The purpose of this paper is to respond to this gap by developing and empirically testing a bi-directional model of organisation/stakeholder relationships. Design/methodology/approach – A conceptual framework is developed that integrates how stakeholders are affected by organisations with how they affect organisations. Quantitative data relating to both sides of the relationship are obtained from 700 customers of a European service organisation and analysed using partial least squares structural equation modelling technique. Findings – The findings provide empirical support for the notion of mutual dependency between organisations and stakeholders as advocated by stakeholder theorists. The results suggest that the way stakeholders relate to organisations is dependent on how organisations relate to stakeholders. Originality/value – The study is original on two fronts: first, it provides a framework and process that can be used by researchers to model bi-directional research with other stakeholder groups and in different contexts. Second, the study presents an example application of bi-directional research by empirically linking organisational and stakeholder expectations in the case of customers of a UK service organisation.
Resumo:
Using a recent theoretical approach, we study how global warming impacts the thermodynamics of the climate system by performing experiments with a simplified yet Earth-like climate model. The intensity of the Lorenz energy cycle, the Carnot efficiency, the material entropy production, and the degree of irreversibility of the system change monotonically with the CO2 concentration. Moreover, these quantities feature an approximately linear behaviour with respect to the logarithm of the CO2 concentration in a relatively wide range. These generalized sensitivities suggest that the climate becomes less efficient, more irreversible, and features higher entropy production as it becomes warmer, with changes in the latent heat fluxes playing a predominant role. These results may be of help for explaining recent findings obtained with state of the art climate models regarding how increases in CO2 concentration impact the vertical stratification of the tropical and extratropical atmosphere and the position of the storm tracks.
Resumo:
In order to build up a multicomponent system able to perform useful light-induced functions, a dithienylethene-bridged heterodinuclear metal complex (Ru/Os) has been prepared. The compound was characterized and its photophysical properties studied in detail.
Resumo:
OBJECTIVE: The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. METHOD: Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. RESULTS: Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. CONCLUSIONS: These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.
Resumo:
We consider the Stokes conjecture concerning the shape of extreme two-dimensional water waves. By new geometric methods including a nonlinear frequency formula, we prove the Stokes conjecture in the original variables. Our results do not rely on structural assumptions needed in previous results such as isolated singularities, symmetry and monotonicity. Part of our results extends to the mathematical problem in higher dimensions.
Resumo:
A self-tuning proportional, integral and derivative control scheme based on genetic algorithms (GAs) is proposed and applied to the control of a real industrial plant. This paper explores the improvement in the parameter estimator, which is an essential part of an adaptive controller, through the hybridization of recursive least-squares algorithms by making use of GAs and the possibility of the application of GAs to the control of industrial processes. Both the simulation results and the experiments on a real plant show that the proposed scheme can be applied effectively.
Resumo:
This paper presents an application study into the use of a bi-directional link with the human nervous system by means of an implant, positioned through neurosurgery. Various applications are described including the interaction of neural signals with an articulated hand, a group of cooperative autonomous robots and to control the movement of a mobile platform. The microelectrode array implant itself is described in detail. Consideration is given to a wider range of possible robot mechanisms, which could interact with the human nervous system through the same technique.
Resumo:
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Resumo:
In civil applications, many researches on MIMO technique have achieved great progress. However, we consider military applications here. Differing from civil applications, military MIMO system may face many kinds of interferences, and the interference source may even not be equipped with multiple antennas. So the military MIMO system may receive some kind of strong interference coming from certain direction. Therefore, the military MIMO system must have capability to suppress directional interference. This paper presents a scheme to suppress directional interference for STBC MIMO system based on beam-forming. Simulation result shows that the scheme is valid to suppress directional strong interference for STBC MIMO system although with some performance loss compared with the ideal case of non-interference.
Resumo:
Ross divides prima facie duties into derivative and foundational ones, but seems to understand the notion of a derivative prima facie duty in two very different ways. Sometimes he understands them in a non-eliminativist way. According to this understanding, basic prima facie duties ground distinct derivative ones. According to the eliminativist understanding, basic duties do not ground distinct derivative duties, but replace (eliminate) them. On the eliminativist view, discovering that a prima facie duty is derivative is discovering that it is not genuine. The genuine one is the basic one. I argue that Ross is best understood as an eliminativist.