921 resultados para Project 2001-002-B : Life Cycle Modelling and Design Knowledge Development in Virtual Environments
Resumo:
BACKGROUND: Thoracic endovascular aortic repair (TEVAR) represents an attractive alternative to open aortic repair (OAR). The aim of this study was to assess outcome and quality of life in patients treated either by TEVAR or OAR for diseased descending thoracic aorta. METHODS: A post hoc analysis of a prospectively collected consecutive series of 136 patients presenting with surgical diseases of the descending aorta between January 2001 and December 2005 was conducted. Fourteen patients were excluded because of involvement of the ascending aorta. Assessed treatment cohorts were TEVAR (n = 52) and OAR (n = 70). Mean follow-up was 34 +/- 18 months. End points were perioperative and late mortality rates and long-term quality of life as assessed by the Short Form Health Survey (SF-36) and Hospital Anxiety and Depression Score questionnaires. RESULTS: Mean age was significantly higher in TEVAR patients (69 +/- 10 years versus 62 +/- 15 years; p = 0.002). Perioperative mortality rates were 9% (OAR) and 8% (TEVAR), respectively (p = 0.254). Accordingly, cumulative long-term mortality rates were similar in both cohorts. Overall quality-of-life scores were 93 (63-110, OAR) and 83 (60-112, TEVAR), respectively. Normal quality-of-life scores range from 85 to 115. Anxiety and depression scores were not increased after open surgery. CONCLUSIONS: Thoracic endovascular aortic repair and OAR both provide excellent long-term results in treatment of thoracic aortic disease. Long-term quality of life, however, is reduced after thoracic aortic repair. Interestingly, TEVAR patients did not score higher in overall quality of life despite all advantages of minimized access trauma. Similarly, anxiety and depression scores are not reduced by TEVAR, possibly reflecting a certain caution against the new technology.
Resumo:
Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.
Resumo:
STUDY QUESTION Is the steroid hormone profile in follicular fluid (FF) at the time of oocyte retrieval different in naturally matured follicles, as in natural cycle IVF (NC-IVF), compared with follicles stimulated with conventional gonadotrophin stimulated IVF (cIVF)? SUMMARY ANSWER Anti-Mullerian hormone (AMH), testosterone (T) and estradiol (E2) concentrations are ∼3-fold higher, androstenedione (A2) is ∼1.5-fold higher and luteinizing hormone (LH) is ∼14-fold higher in NC-IVF than in cIVF follicles, suggesting an alteration of the follicular metabolism in conventional gonadotrophin stimulated IVF. WHAT IS KNOWN ALREADY In conventional IVF, the implantation rate of unselected embryos appears to be lower than in NC-IVF, which is possibly due to negative effects of the stimulation regimen on follicular metabolism. In NC-IVF, the intrafollicular concentration of AMH has been shown to be positively correlated with the oocyte fertilization and implantation rates. Furthermore, androgen treatment seems to improve the ovarian response in low responders. STUDY DESIGN, SIZE, DURATION This cross-sectional study involving 36 NC-IVF and 40 cIVF cycles was performed from 2011 to 2013. Within this population, 13 women each underwent 1 NC-IVF and 1 cIVF cycle. cIVF was performed by controlled ovarian stimulation with HMG and GnRH antagonists. PARTICIPANTS/MATERIALS, SETTING, METHODS Follicular fluid was collected from the leading follicles. AMH, T, A2, dehydroepiandrosterone (DHEA), E2, FSH, LH and progesterone (P) were determined by immunoassays in 76 women. Aromatase activity in follicular fluid cells was analysed by a tritiated water release assay in 33 different women. For statistical analysis, the non-parametric Mann-Whitney U or Wilcoxon tests were used. MAIN RESULTS AND ROLE OF CHANCE In follicular fluid from NC-IVF and from cIVF, median levels were 32.8 and 10.7 pmol/l for AMH (P < 0.0001), 47.2 and 18.8 µmol/l for T (P < 0.0001), 290 and 206 nmol/l for A2 (P = 0.0035), 6.7 and 5.6 pg/ml for DHEA (n.s.), 3292 and 1225 nmol/l for E2 (P < 0.0001), 4.9 and 7.2 mU/ml for FSH (P < 0.05), 14.4 and 0.9 mU/ml for LH (P < 0.0001) and 62 940 and 54 710 nmol/l for P (n.s.), respectively. Significant differences in follicular fluid concentrations for AMH, E2 and LH were also found in the 13 patients who underwent both NC-IVF and cIVF when they were analysed separately in pairs. Hormone analysis in serum excluded any relevant impact of AMH, T, A2, and E2 serum concentration on the follicular fluid hormone concentrations. Median serum concentrations were 29.4 and 0.9 mU/ml for LH (P < 0.0001) and 2.7 and 23.5 nmol/l for P (P < 0.0001) after NC-IVF and c-IVF, respectively. Positive correlations were seen for FF-AMH with FF-T (r = 0.35, P = 0.0002), FF-T with FF-LH (r = 0.48, P < 0.0001) and FF-E2 with FF-T (r = 0.75, P < 0.0001). The analysis of aromatase activity was not different in NC-IVF and cIVF follicular cells. LIMITATION, REASONS FOR CAUTION Any association between the hormone concentrations and the implantation potential of the oocytes could not be investigated as the oocytes in cIVF were not treated individually in the IVF laboratory. Since both c-IVF and NC-IVF follicles were stimulated by hCG before retrieval, the endocrine milieu in the natural cycle does not represent the pure physiological situation. WIDER IMPLICATIONS OF THE FINDINGS The endocrine follicular milieu and the concentration of putative markers of oocyte quality, such as AMH, are significantly different in gonadotrophin-stimulated conventional IVF compared with natural cycle IVF. This could be a cause for the suggested lower oocyte quality in cIVF compared with naturally matured oocytes. The reasons for the reduced AMH concentration might be low serum and follicular fluid LH concentrations due to LH suppression, leading initially to low follicular androgen concentrations and then to low follicular AMH production. STUDY FUNDING/COMPETING INTERESTS Funding for this study was obtained from public universities (for salaries) and private industry (for consumables). Additionally, the study was supported by an unrestricted grant from MSD Merck Sharp & Dohme GmbH and IBSA Institut Biochimique SA. The authors are clinically involved in low-dose monofollicular stimulation and IVF therapies, using gonadotrophins from all gonadotrophin distributors on the Swiss market, including Institut Biochimique SA and MSD Merck Sharp & Dohme GmbH. Otherwise, the authors have no competing interests. TRIAL REGISTRATION NUMBER Not applicable.
Resumo:
Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.
Resumo:
SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.
Resumo:
This study analyzed the relationship of family support systems and adolescent pregnancy outcomes. The population for the study was 390 adolescents who had attended the Marion County Health Department Adolescent Family Life Project in Indianapolis, Indiana during a two-year period.^ The study is unique in that it afforded the opportunity to compare adolescent pregnancy-related characteristics, of white and non-white adolescents in the same study.^ The pregnancy outcomes studied were: Infant birthweight, school attendance, and pregnancy recidivism.^ Significant results were found in the analysis that supported other research in regard to factors that are associated with school attendance when family support, adolescent's age, and ethnicity were controlled. Infant birthweight and repeat pregnancy outcome relationships were not found to have any consistently significant relationship with independent variables anticipated to be associated. However, the comparisons of infant birthweight among the adolescents with, and without, family support, by ethnicity resulted in some interesting findings. Repeat pregnancy proved an enigma, in that there seemed to be almost no variables in this study that were associated with the adolescent having a repeat pregnancy.^ Familial support in this study seemed to be of less importance as a factor in adolescent pregnancy outcomes than was ethnicity. The non-white adolescents in this study had a better record for remaining in school, both those non-white adolescents who lived with parents, and those who did not live with parents. More low birthweight occurred in the non-white adolescent, both those adolescents who lived with parents, and those who did not live with parents. Repeat pregnancy occurred more in the non-white adolescent whether she lived with parents, or did not live with parents. ^
Resumo:
Purpose Concentrating Solar Power (CSP) plants based on parabolic troughs utilize auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs. Methods A complete Life Cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35% of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative Energy Demands (CED) and Energy Payback Times (EPT) were also determined for each scenario. Results and discussion Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh, acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilization NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions. Conclusions Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilization. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.
Resumo:
To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten−/− ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27KIP1, a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten−/− cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4,5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.
Resumo:
When conceptualizing healthy couple relationships, it is tempting to use a simple framework as a panacea. Unfortunately, this desire for simplicity can lead to a narrow and naive perspective. Individuals interact and are influenced by a variety of factors (i.e., various social systems, multiple context memberships, complex interconnecting exchanges, etc.); consequently, it is necessary to guard against an overly narrow interpretation when examining healthy couple interactions. It is the purpose of this paper to develop one aspect of a complex perspective for healthy couple relationships by comparing couple life cycle development with couple intimacy-distance regulation.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Resumo:
Investigation about the psychological experiences of the reproductive life cycle showed that in critical moments special reactions may happen. These reactions seem to be defensive in nature, are set in motion in order to promote some kind of emotional protection and are performed in two opposite directions: a) a decreasing of the contact with aggressive impulses and b) an increasing of the use of rationalization and denial of frustrating situations. Examples of those rearrangements were observed at samples of: 1) pregnant women in obstetric high-risk consultation, 2) infertile couples waiting for infertility consultations and 3) pregnant women waiting for amniocentesis results. These data seem to be in accordance with the classical psychological points of view: a) gestation should be considered as a period of protection, b) during pregnancy a “primary maternal preoccupation” (Winnicot, 1958) emerges leading to the mobilization of all resources available for pregnant women and c) along gestational development psychological changes show how flexible maternal functioning may become. What was not expected is that in the absence of pregnancy, infertile couples should behave very similarly to what it is observed when pregnancy is in danger or when medical problems about the mother’s or the baby’s health arise in the horizon. Due to its “freezing” consequences upon emotional development we propose that this kind of reaction will be designated as “stand-by reaction”.
Resumo:
The present work aims to develop the Life Cycle Assessment study of thermo-modified Atlanticwood® pine boards based on real data provided by Santos & Santos Madeiras company. Atlanticwood® pine boards are used mainly for exterior decking and cladding facades of buildings. The LCA study is elaborated based on ISO 14040/44 standard and Product Category Rules for preparing an environmental product declaration for Construction Products and Construction Services. The inventory analysis and, subsequently, the impact analysis have been performed using the LCA software SimaPro8.0.4. The method chosen for impact assessment was EPD (2013) V1.01. The results show that more than ¾ of ‘Acidification’, ‘Eutrophication’, ‘Global warming’ and ‘Abiotic depletion’ caused by 1 m3 of Atlanticwood® pine boards production is due to energy consumption (electricity + gas + biomass). This was to be expected since the treatment is based on heat production and no chemicals are added during the heat treatment process.
Resumo:
Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.