913 resultados para Probabilistic fire risk analysis
Resumo:
Includes bibliographies.
Resumo:
The desire to know the future is as old as humanity. For the tourism industry the demand for accurate foretelling of the future course of events is a task that consumes considerable energy and is of great significance to investors. This paper examines the issue of forecasting by comparing forecasts of inbound tourism made prior to the political and economic crises that engulfed Indonesia from 1997 onwards with actual arrival figures. The paper finds that current methods of forecasting are not able to cope with unexpected crises and other disasters and that alternative methods need to be examined including scenarios, political risk and application of chaos theory. The paper outlines a framework for classifying shocks according to a scale of severity, probability, type of event, level of certainty and suggested forecasting tools for each scale of shock. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Smallholder farmers in Africa practice traditional cropping techniques such as intercropping. Intercropping is thought to offer higher productivity and resource milisation than sole cropping. In this study, risk associated with maize-bean intercropping was evaluated by quantifying long-term yield in both intercropping and sole cropping in a semi-arid region of South Africa (Bloemfontein, Free State) with reference to rainfall variability. The crop simulation model was run with different cultural practices (planting date and plant density) for 52 summer crop growing seasons (1950/1951-2001/2002). Eighty-one scenarios, consisted of three levels of initial soil water, planting date, maize population, and bean population, were simulated. From the simulation outputs, the total land equivalent ratio (LER) was greater than one. The intercrop (equivalent to sole maize) had greater energy value (EV) than sole beans, and the intercrop (equivalent to sole beans) had greater monetary value (MV) than sole maize. From these results, it can be concluded that maize-bean intercropping is advantageous for this semi-arid region. Soil water at planting was the most important factor of all scenario factors, followed by planting date. Irrigation application at planting, November/December planting and high plant density of maize for EV and beans for MV can be one of the most effective cultural practices in the study region. With regard to rainfall variability, seasonal (October-April) rainfall positively affected EV and MV, but not LER. There was more intercrop production in La Nina years than in El Nino years. Thus, better cultural practices may be selected to maximize maize-bean intercrop yields for specific seasons in the semi-arid region based on the global seasonal outlook. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Background There are no analytical studies of individual risks for Ross River virus (RRV) disease. Therefore, we set out to determine individual risk and protective factors for RRV disease in a high incidence area and to assess the utility of the case-control design applied for this purpose to an arbovirus disease. Methods We used a prospective matched case-control study of new community cases of RRV disease in the local government areas of Cairns, Mareeba, Douglas, and Atherton, in tropical Queensland, from January I to May 31, 1998. Results Protective measures against mosquitoes reduced the risk for disease. Mosquito coils, repellents, and citronella candles each decreased risk by at least 2-fold, with a dose-response for the number of protective measures used. Light-coloured clothing decreased risk 3-fold. Camping increased the risk 8-fold. Conclusions These risks were substantial and statistically significant, and provide a basis for educational programs on individual protection against RRV disease in Australia. Our study demonstrates the utility of the case-control method for investigating arbovirus risks. Such a risk analysis has not been done before for RRV infection, and is infrequently reported for other arbovirus infections.
Resumo:
Recent government intervention in research higher degree policy across the globe has sharpened universities' focus on the quality of their students' research education experience and on timely completion rates. Studies have sought to highlight the factors that predict research students' timely completion of their studies. Many universities have sought to tighten their selection processes as a way of improving completion rates, even verging on adopting a risk analysis approach to selecting students. Instead this paper takes a preventative, interventionist approach to improving timely completions. It explores how experienced supervisors detect and deal with early warning signs that their research students are experiencing difficulty. It also investigates the wide range of reasons some students nominate for not discussing these difficulties directly with their supervisors. It proposes that supervisors may be able to improve timely completions if they are aware of these reasons and if they adopt a range of explicit pedagogical strategies to support students' learning.
Resumo:
The role of mutualisms in contributing to species invasions is rarely considered, inhibiting effective risk analysis and management options. Potential ecological consequences of invasion of non-native pollinators include increased pollination and seed set of invasive plants, with subsequent impacts on population growth rates and rates of spread. We outline a quantitative approach for evaluating the impact of a proposed introduction of an invasive pollinator on existing weed population dynamics and demonstrate the use of this approach on a relatively data-rich case study: the impacts on Cytisus scoparius (Scotch broom) from proposed introduction of Bombus terrestris. Three models have been used to assess population growth (matrix model), spread speed (integrodifference equation), and equilibrium occupancy (lattice model) for C. scoparius. We use available demographic data for an Australian population to parameterize two of these models. Increased seed set due to more efficient pollination resulted in a higher population growth rate in the density-independent matrix model, whereas simulations of enhanced pollination scenarios had a negligible effect on equilibrium weed occupancy in the lattice model. This is attributed to strong microsite limitation of recruitment in invasive C. scoparius populations observed in Australia and incorporated in the lattice model. A lack of information regarding secondary ant dispersal of C. scoparius prevents us from parameterizing the integrodifference equation model for Australia, but studies of invasive populations in California suggest that spread speed will also increase with higher seed set. For microsite-limited C. scoparius populations, increased seed set has minimal effects on equilibrium site occupancy. However, for density-independent rapidly invading populations, increased seed set is likely to lead to higher growth rates and spread speeds. The impacts of introduced pollinators on native flora and fauna and the potential for promoting range expansion in pollinator-limited 'sleeper weeds' also remain substantial risks.
Resumo:
Collaborative recommendation is one of widely used recommendation systems, which recommend items to visitor on a basis of referring other's preference that is similar to current user. User profiling technique upon Web transaction data is able to capture such informative knowledge of user task or interest. With the discovered usage pattern information, it is likely to recommend Web users more preferred content or customize the Web presentation to visitors via collaborative recommendation. In addition, it is helpful to identify the underlying relationships among Web users, items as well as latent tasks during Web mining period. In this paper, we propose a Web recommendation framework based on user profiling technique. In this approach, we employ Probabilistic Latent Semantic Analysis (PLSA) to model the co-occurrence activities and develop a modified k-means clustering algorithm to build user profiles as the representatives of usage patterns. Moreover, the hidden task model is derived by characterizing the meaningful latent factor space. With the discovered user profiles, we then choose the most matched profile, which possesses the closely similar preference to current user and make collaborative recommendation based on the corresponding page weights appeared in the selected user profile. The preliminary experimental results performed on real world data sets show that the proposed approach is capable of making recommendation accurately and efficiently.
Resumo:
The development of an information system in Caribbean public sector organisations is usually seen as a matter of installing hardware and software according to a directive from senior management, without much planning. This causes huge investment in procuring hardware and software without improving overall system performance. Increasingly, Caribbean organisations are looking for assurances on information system performance before making investment decisions not only to satisfy the funding agencies, but also to be competitive in this dynamic and global business world. This study demonstrates an information system planning approach using a process-reengineering framework. Firstly, the stakeholders for the business functions are identified along with their relationships and requirements. Secondly, process reengineering is carried out to develop the system requirements. Accordingly, information technology is selected through detailed system requirement analysis. Thirdly, cost-benefit analysis, identification of critical success factors and risk analysis are carried out to strengthen the selection. The entire methodology has been demonstrated through an information system project in the Barbados drug service, a public sector organisation in the Caribbean.
Resumo:
In India, more than one third of the population do not currently have access to modern energy services. Biomass to energy, known as bioenergy, has immense potential for addressing India’s energy poverty. Small scale decentralised bioenergy systems require low investment compared to other renewable technologies and have environmental and social benefits over fossil fuels. Though they have historically been promoted in India through favourable policies, many studies argue that the sector’s potential is underutilised due to sustainable supply chain barriers. Moreover, a significant research gap exists. This research addresses the gap by analysing the potential sustainable supply chain risks of decentralised small scale bioenergy projects. This was achieved through four research objectives, using various research methods along with multiple data collection techniques. Firstly, a conceptual framework was developed to identify and analyse these risks. The framework is founded on existing literature and gathered inputs from practitioners and experts. Following this, sustainability and supply chain issues within the sector were explored. Sustainability issues were collated into 27 objectives, and supply chain issues were categorised according to related processes. Finally, the framework was validated against an actual bioenergy development in Jodhpur, India. Applying the framework to the action research project had some significant impacts upon the project’s design. These include the development of water conservation arrangements, the insertion of auxiliary arrangements, measures to increase upstream supply chain resilience, and the development of a first aid action plan. More widely, the developed framework and identified issues will help practitioners to take necessary precautionary measures and address them quickly and cost effectively. The framework contributes to the bioenergy decision support system literature and the sustainable supply chain management field by incorporating risk analysis and introducing the concept of global and organisational sustainability in supply chains. The sustainability issues identified contribute to existing knowledge through the exploration of a small scale and developing country context. The analysis gives new insights into potential risks affecting the whole bioenergy supply chain.
Resumo:
A cross-country pipeline construction project is exposed to an uncertain environment due to its enormous size (physical, manpower requirement and financial value), complexity in design technology and involvement of external factors. These uncertainties can lead to several changes in project scope during the process of project execution. Unless the changes are properly controlled, the time, cost and quality goals of the project may never be achieved. A methodology is proposed for project control through risk analysis, contingency allocation and hierarchical planning models. Risk analysis is carried out through the analytic hierarchy process (AHP) due to the subjective nature of risks in construction projects. The results of risk analysis are used to determine the logical contingency for project control with the application of probability theory. Ultimate project control is carried out by hierarchical planning model which enables decision makers to take vital decisions during the changing environment of the construction period. Goal programming (GP), a multiple criteria decision-making technique, is proposed for model formulation because of its flexibility and priority-base structure. The project is planned hierarchically in three levels—project, work package and activity. GP is applied separately at each level. Decision variables of each model are different planning parameters of the project. In this study, models are formulated from the owner's perspective and its effectiveness in project control is demonstrated.
Resumo:
This thesis addressed the problem of risk analysis in mental healthcare, with respect to the GRiST project at Aston University. That project provides a risk-screening tool based on the knowledge of 46 experts, captured as mind maps that describe relationships between risks and patterns of behavioural cues. Mind mapping, though, fails to impose control over content, and is not considered to formally represent knowledge. In contrast, this thesis treated GRiSTs mind maps as a rich knowledge base in need of refinement; that process drew on existing techniques for designing databases and knowledge bases. Identifying well-defined mind map concepts, though, was hindered by spelling mistakes, and by ambiguity and lack of coverage in the tools used for researching words. A novel use of the Edit Distance overcame those problems, by assessing similarities between mind map texts, and between spelling mistakes and suggested corrections. That algorithm further identified stems, the shortest text string found in related word-forms. As opposed to existing approaches’ reliance on built-in linguistic knowledge, this thesis devised a novel, more flexible text-based technique. An additional tool, Correspondence Analysis, found patterns in word usage that allowed machines to determine likely intended meanings for ambiguous words. Correspondence Analysis further produced clusters of related concepts, which in turn drove the automatic generation of novel mind maps. Such maps underpinned adjuncts to the mind mapping software used by GRiST; one such new facility generated novel mind maps, to reflect the collected expert knowledge on any specified concept. Mind maps from GRiST are stored as XML, which suggested storing them in an XML database. In fact, the entire approach here is ”XML-centric”, in that all stages rely on XML as far as possible. A XML-based query language allows user to retrieve information from the mind map knowledge base. The approach, it was concluded, will prove valuable to mind mapping in general, and to detecting patterns in any type of digital information.
Resumo:
Trenchless methods have been considered to be a viable solution for pipeline projects in urban areas. Their applicability in pipeline projects is expected to increase with the rapid advancements in technology and emerging concerns regarding social costs related to trenching methods. Selecting appropriate project delivery system (PDS) is a key to the success of trenchless projects. To ensure success of the project, the selected project delivery should be tailored to trenchless project specific characteristics and owner needs, since the effectiveness of project delivery systems differs based on different project characteristics and owners requirements. Since different trenchless methods have specific characteristics such rate of installation, lengths of installation, and accuracy, the same project delivery systems may not be equally effective for different methods. The intent of this paper is to evaluate the appropriateness of different PDS for different trenchless methods. PDS are examined through a structured decision-making process called Fuzzy Delivery System Selection Model (FDSSM). The process of incorporating the impacts of: (a) the characteristics of trenchless projects and (b) owners’ needs in the FDSSM is performed by collecting data using questionnaires deployed to professionals involved in the trenchless industry in order to determine the importance of delivery systems selection attributes for different trenchless methods, and then analyzing this data. The sensitivity of PDS rankings with respect to trenchless methods is considered in order to evaluate whether similar project delivery systems are equally effective in different trenchless methods. The effectiveness of PDS with respect to attributes is defined as follows: a project delivery system is most effective with respect to an attribute (e.g., ability to control growth in costs ) if there is no project delivery system that is more effective than that PDS. The results of this study may assist trenchless project owners to select the appropriate PDS for the trenchless method selected.
Resumo:
Carbon capture and storage (CCS) can contribute significantly to addressing the global greenhouse gas (GHG) emissions problem. Despite widespread political support, CCS remains unknown to the general public. Public perception researchers have found that, when asked, the public is relatively unfamiliar with CCS yet many individuals voice specific safety concerns regarding the technology. We believe this leads many stakeholders conflate CCS with the better-known and more visible technology hydraulic fracturing (fracking). We support this with content analysis of media coverage, web analytics, and public lobbying records. Furthermore, we present results from a survey of United States residents. This first-of-its-kind survey assessed participants’ knowledge, opinions and support of CCS and fracking technologies. The survey showed that participants had more knowledge of fracking than CCS, and that knowledge of fracking made participants less willing to support CCS projects. Additionally, it showed that participants viewed the two technologies as having similar risks and similar risk intensities. In the CCS stakeholder literature, judgment and decision-making (JDM) frameworks are noticeably absent, and public perception is not discussed using any cognitive biases as a way of understanding or explaining irrational decisions, yet these survey results show evidence of both anchoring bias and the ambiguity effect. Public acceptance of CCS is essential for a national low-carbon future plan. In conclusion, we propose changes in communications and incentives as programs to increase support of CCS.
Resumo:
The importance of checking the normality assumption in most statistical procedures especially parametric tests cannot be over emphasized as the validity of the inferences drawn from such procedures usually depend on the validity of this assumption. Numerous methods have been proposed by different authors over the years, some popular and frequently used, others, not so much. This study addresses the performance of eighteen of the available tests for different sample sizes, significance levels, and for a number of symmetric and asymmetric distributions by conducting a Monte-Carlo simulation. The results showed that considerable power is not achieved for symmetric distributions when sample size is less than one hundred and for such distributions, the kurtosis test is most powerful provided the distribution is leptokurtic or platykurtic. The Shapiro-Wilk test remains the most powerful test for asymmetric distributions. We conclude that different tests are suitable under different characteristics of alternative distributions.
Resumo:
Objective: To estimate the absolute treatment effect of statin therapy on major adverse cardiovascular events (MACE; myocardial infarction, stroke and vascular death) for the individual patient aged C70 years. Methods: Prediction models for MACE were derived in patients aged C70 years with (n = 2550) and without (n = 3253) vascular disease from the ‘‘PROspective Study of Pravastatin in Elderly at Risk’’ (PROSPER) trial and validated in the ‘‘Secondary Manifestations of ARTerial disease’’ (SMART) cohort study (n = 1442) and the ‘‘Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm’’ (ASCOT-LLA) trial (n = 1893), respectively, using competing risk analysis. Prespecified predictors were various clinical characteristics including statin treatment. Individual absolute risk reductions (ARRs) for MACE in 5 and 10 years were estimated by subtracting ontreatment from off-treatment risk. Results: Individual ARRs were higher in elderly patients with vascular disease [5-year ARRs: median 5.1 %, interquartile range (IQR) 4.0–6.2 %, 10-year ARRs: median 7.8 %, IQR 6.8–8.6 %] than in patients without vascular disease (5-year ARRs: median 1.7 %, IQR 1.3–2.1 %, 10-year ARRs: 2.9 %, IQR 2.3–3.6 %). Ninetyeight percent of patients with vascular disease had a 5-year ARR C2.0 %, compared to 31 % of patients without vascular disease. Conclusions: With a multivariable prediction model the absolute treatment effect of a statin on MACE for individual elderly patients with and without vascular disease can be quantified. Because of high ARRs, treating all patients is more beneficial than prediction-based treatment for secondary prevention of MACE. For primary prevention of MACE, the prediction model can be used to identify those patients who benefit meaningfully from statin therapy.