945 resultados para Prioritized fuzzy constraint satisfaction
Resumo:
Prediction of variable bit rate compressed video traffic is critical to dynamic allocation of resources in a network. In this paper, we propose a technique for preprocessing the dataset used for training a video traffic predictor. The technique involves identifying the noisy instances in the data using a fuzzy inference system. We focus on three prediction techniques, namely, linear regression, neural network and support vector regression and analyze their performance on H.264 video traces. Our experimental results reveal that data preprocessing greatly improves the performance of linear regression and neural network, but is not effective on support vector regression.
Resumo:
A reliable method for service life estimation of the structural element is a prerequisite for service life design. A new methodology for durability-based service life estimation of reinforced concrete flexural elements with respect to chloride-induced corrosion of reinforcement is proposed. The methodology takes into consideration the fuzzy and random uncertainties associated with the variables involved in service life estimation by using a hybrid method combining the vertex method of fuzzy set theory with Monte Carlo simulation technique. It is also shown how to determine the bounds for characteristic value of failure probability from the resulting fuzzy set for failure probability with minimal computational effort. Using the methodology, the bounds for the characteristic value of failure probability for a reinforced concrete T-beam bridge girder has been determined. The service life of the structural element is determined by comparing the upper bound of characteristic value of failure probability with the target failure probability. The methodology will be useful for durability-based service life design and also for making decisions regarding in-service inspections.
Resumo:
This paper describes an application of a FACTS supplementary controller for damping of inter area oscillations in power systems. A fuzzy logic controller is designed to regulate a thyristor controlled series capacitor (TCSC) in a multimachine environment to produce additional damping in the system. Simultaneous application of the excitation controller and proposed controller is also investigated. Simulation studies have been done with different types of disturbances and the results are shown to be consistent with the expected performance of the supplementary controller.
Resumo:
This paper addresses the problem of curtailing the number of control actions using fuzzy expert approach for voltage/reactive power dispatch. It presents an approach using fuzzy set theory for reactive power control with the purpose of improving the voltage profile of a power system. To minimize the voltage deviations from pre-desired values of all the load buses, using the sensitivities with respect to reactive power control variables form the basis of the proposed Fuzzy Logic Control (FLC). Control variables considered are switchable VAR compensators, On Load Tap Changing (OLTC) transformers and generator excitations. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. The developed fuzzy system is tested on a few simulated practical Indian power systems and modified IEEE-30 bus system. The performance of the fuzzy system is compared with conventional optimization technique and results obtained are encouraging. Results obtained for a modified IEEE-30 bus test system and a 205-node equivalent EHV system a part of Indian southern grid are presented for illustration purposes. The proposed fuzzy-expert technique is found suitable for on-line applications in energy control centre as the solution is obtained fast with significant speedups with few number of controllers.
Resumo:
This article compares the land use in solar energy technologies with conventional energy sources. This has been done by introducing two parameters called land transformation and land occupation. It has been shown that the land area transformed by solar energy power generation is small compared to hydroelectric power generation, and is comparable with coal and nuclear energy power generation when life-cycle transformations are considered. We estimate that 0.97% of total land area or 3.1% of the total uncultivable land area of India would be required to generate 3400 TWh/yr from solar energy power systems in conjunction with other renewable energy sources.
Resumo:
Points-to analysis is a key compiler analysis. Several memory related optimizations use points-to information to improve their effectiveness. Points-to analysis is performed by building a constraint graph of pointer variables and dynamically updating it to propagate more and more points-to information across its subset edges. So far, the structure of the constraint graph has been only trivially exploited for efficient propagation of information, e.g., in identifying cyclic components or to propagate information in topological order. We perform a careful study of its structure and propose a new inclusion-based flow-insensitive context-sensitive points-to analysis algorithm based on the notion of dominant pointers. We also propose a new kind of pointer-equivalence based on dominant pointers which provides significantly more opportunities for reducing the number of pointers tracked during the analysis. Based on this hitherto unexplored form of pointer-equivalence, we develop a new context-sensitive flow-insensitive points-to analysis algorithm which uses incremental dominator update to efficiently compute points-to information. Using a large suite of programs consisting of SPEC 2000 benchmarks and five large open source programs we show that our points-to analysis is 88% faster than BDD-based Lazy Cycle Detection and 2x faster than Deep Propagation. We argue that our approach of detecting dominator-based pointer-equivalence is a key to improve points-to analysis efficiency.
Resumo:
In this paper, a method for the tuning the membership functions of a Mamdani type Fuzzy Logic Controller (FLC) using the Clonal Selection Algorithm(CSA) a model of the Artificial Immune System(AIS) paradigm is examined. FLC's are designed for two problems, firstly the linear cart centering problem and secondly the highly nonlinear inverted pendulum problem. The FLC tuned by AIS is compared with FLC tuned by GA. In order to check the robustness of the designed PLC's white noise was added to the system, further, the masses of the cart and the length and mass of the pendulum are changed. The PLC's were also tested in the presence of faulty rules. Finally, Kruskal Wallis test was performed to compare the performance of the GA and AIS. An insight into the algorithms are also given by studying the effect of the important parameters of GA and AIS.
Resumo:
Effective network overload alleviation is very much essential in order to maintain security and integrity from the operational viewpoint of deregulated power systems. This paper aims at developing a methodology to reschedule the active power generation from the sources in order to manage the network congestion under normal/contingency conditions. An effective method has been proposed using fuzzy rule based inference system. Using virtual flows concept, which provides partial contributions/counter flows in the network elements is used as a basis in the proposed method to manage network congestions to the possible extent. The proposed method is illustrated on a sample 6 bus test system and on modified IEEE 39 bus system.
Resumo:
Sixteen irrigation subsystems of the Mahi Bajaj Sagar Project, Rajasthan, India, are evaluated and selection of the most suitable/best is made using data envelopment analysis (DEA) in both deterministic and fuzzy environments. Seven performance-related indicators, namely, land development works (LDW), timely supply of inputs (TSI), conjunctive use of water resources (CUW), participation of farmers (PF), environmental conservation (EC), economic impact (EI) and crop productivity (CPR) are considered. Of the seven, LDW, TSI, CUW, PF and EC are considered inputs, whereas CPR and EI are considered outputs for DEA modelling purposes. Spearman rank correlation coefficient values are also computed for various scenarios. It is concluded that DEA in both deterministic and fuzzy environments is useful for the present problem. However, the outcome of fuzzy DEA may be explored for further analysis due to its simple, effective data and discrimination handling procedure. It is inferred that the present study can be explored for similar situations with suitable modifications.
Resumo:
Crop type classification using remote sensing data plays a vital role in planning cultivation activities and for optimal usage of the available fertile land. Thus a reliable and precise classification of agricultural crops can help improve agricultural productivity. Hence in this paper a gene expression programming based fuzzy logic approach for multiclass crop classification using Multispectral satellite image is proposed. The purpose of this work is to utilize the optimization capabilities of GEP for tuning the fuzzy membership functions. The capabilities of GEP as a classifier is also studied. The proposed method is compared to Bayesian and Maximum likelihood classifier in terms of performance evaluation. From the results we can conclude that the proposed method is effective for classification.
Resumo:
In this paper, we study the diversity-multiplexing-gain tradeoff (DMT) of wireless relay networks under the half-duplex constraint. It is often unclear what penalty if any, is imposed by the half-duplex constraint on the DMT of such networks. We study two classes of networks; the first class, called KPP(I) networks, is the class of networks with the relays organized in K parallel paths between the source and the destination. While we assume that there is no direct source-destination path, the K relaying paths can interfere with each other. The second class, termed as layered networks, is comprised of relays organized in layers, where links exist only between adjacent layers. We present a communication scheme based on static schedules and amplify-and-forward relaying for these networks. We also show that for KPP(I) networks with K >= 3, the proposed schemes can achieve full-duplex DMT performance, thus demonstrating that there is no performance hit on the DMT due to the half-duplex constraint. We also show that, for layered networks, a linear DMT of d(max)(1 - r)(+) between the maximum diversity d(max) and the maximum MG, r(max) = 1 is achievable. We adapt existing DMT optimal coding schemes to these networks, thus specifying the end-to-end communication strategy explicitly.
Resumo:
We study the collapse of a fuzzy sphere, that is a spherical membrane built out of D0-branes, in the Banks-Fischler-Shenker-Susskind model. At weak coupling, as the sphere shrinks, open strings are produced. If the initial radius is large then open string production is not important and the sphere behaves classically. At intermediate initial radius the backreaction from open string production is important but the fuzzy sphere retains its identity. At small initial radius the sphere collapses to form a black hole. The crossover between the later two regimes is smooth and occurs at the correspondence point of Horowitz and Polchinski.