923 resultados para Prey Harvesting
Resumo:
In the dinoflagellate Amphidinium carterae, photoadaptation involves changes in the transcription of genes encoding both of the major classes of light-harvesting proteins, the peridinin chlorophyll a proteins (PCPs) and the major a/c-containing intrinsic light-harvesting proteins (LHCs). PCP and LHC transcript levels were increased up to 86- and 6-fold higher, respectively, under low-light conditions relative to cells grown at high illumination. These increases in transcript abundance were accompanied by decreases in the extent of methylation of CpG and CpNpG motifs within or near PCP- and LHC-coding regions. Cytosine methylation levels in A. carterae are therefore nonstatic and may vary with environmental conditions in a manner suggestive of involvement in the regulation of gene expression. However, chemically induced undermethylation was insufficient in activating transcription, because treatment with two methylation inhibitors had no effect on PCP mRNA or protein levels. Regulation of gene activity through changes in DNA methylation has traditionally been assumed to be restricted to higher eukaryotes (deuterostomes and green plants); however, the atypically large genomes of dinoflagellates may have generated the requirement for systems of this type in a relatively “primitive” organism. Dinoflagellates may therefore provide a unique perspective on the evolution of eukaryotic DNA-methylation systems.
Resumo:
Cyanobacteria are important contributors to global photosynthesis in both marine and terrestrial environments. Quantitative data are presented on UV-B-induced damage to the major cyanobacterial photosynthetic light harvesting complex, the phycobilisome, and to each of its constituent phycobiliproteins. The photodestruction quantum yield, phi295 nm, for the phycobiliproteins is high (approximately 10(-3), as compared with approximately 10(-7) for visible light). Energy transfer on a picosecond time scale does not compete with photodestruction. Photodamage to phycobilisomes in vitro and in living cells is amplified by causing dissociation and loss of function of the complex. In photosynthetic organisms, UV-B damage to light-harvesting complexes may significantly exceed that to DNA.
Resumo:
The role of carotenoids in quenching of chlorophyll fluorescence in the major light-harvesting complex of photosystem II has been studied with a view to understanding the molecular basis of the control of photoprotective nonradiative energy dissipation by the xanthophyll cycle in vivo. The control of chlorophyll fluorescence quenching in the isolated complex has been investigated in terms of the number of the conjugated double bonds for a series of carotenoids ranging from n = 5-19, giving an estimated first excited singlet state energy from 20,700 cm-1 to 10,120 cm-1. At pH 7.8 the addition of exogenous carotenoids with >=10 conjugated double bonds (including zeaxanthin) stimulated fluorescence quenching relative to the control with no added carotenoid, whereas those with n = 9 conjugated double bonds (e.g., violaxanthin) had no effect on fluorescence. When quenching in the light-harvesting complex of photosystem II was induced by a lowering of pH to 5.5, carotenoids with n = 9 conjugated double bonds (including violaxanthin) caused a noticeable inhibition of fluorescence quenching relative to the control. Of the 10 carotenoids tested, quenching induced by the addition of the tertiary amine compound, dibucaine, to isolated light-harvesting complex of photosystem II could only be reversed by violaxanthin. These results are discussed in terms of the two theories developed to explain the role of zeaxanthin and violaxanthin in nonphotochemical quenching of chlorophyll fluorescence.
Resumo:
A new interaction between insects and carnivorous plants is reported from Brazil. Larvae of the predatory flower fly Toxomerus basalis (Diptera: Syrphidae: Syrphinae) have been found scavenging on the sticky leaves of several carnivorous sundew species (Drosera, Droseraceae) in Minas Gerais and São Paulo states, SE Brazil. This syrphid apparently spends its whole larval stage feeding on prey trapped by Drosera leaves. The nature of this plant-animal relationship is discussed, as well as the Drosera species involved, and locations where T. basalis was observed. 180 years after the discovery of this flower fly species, its biology now has been revealed. This is (1) the first record of kleptoparasitism in the Syrphidae, (2) a new larval feeding mode for this family, and (3) the first report of a dipteran that shows a kleptoparasitic relationship with a carnivorous plant with adhesive flypaper traps. The first descriptions of the third instar larva and puparium of T. basalis based on Scanning Electron Microscope analysis are provided.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
On cover: "East of the Rockies" added to title.
Resumo:
"New series" vol. III, no. 3.
Resumo:
Based upon a dissertation by R. I. Van Hook to the Graduate Council of Clemson University in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
Resumo:
Cover title.
Resumo:
Typewritten.
Resumo:
"The appendices, other than the legislation, were prepared by the Bureau of Parks and Recreation."
Resumo:
Reuse of record except for individual research requires license from Congressional Information Service, Inc.
Resumo:
Mode of access: Internet.
Resumo:
Cover title.