991 resultados para Plant virus immunogenicity
Resumo:
Nitrogen relations of natural and disturbed tropical plant communities in northern Australia (Kakadu National Park) were studied. Plant and soil N characteristics suggested that differences in N source utilisation occur at community and species level. Leaf and xylem sap N concentrations of plants in different communities were correlated with the availability of inorganic soil N (NH4+ and NO3-). In general, rates of leaf NO3- assimilation were low. Even in communities with a higher N status, including deciduous monsoon forest, disturbed wetland, and a revegetated mine waste rock dump, levels of leaf nitrate reductase, xylem and leaf NO3 levels were considerably lower than those that have been reported for eutrophic communities. Although NO3- assimilation in escarpment and eucalypt woodlands, and wetland, was generally low, within these communities there was a suite of species that exhibited a greater capacity for NO3- assimilation. These high-NO3- species were mainly annuals, resprouting herbs or deciduous trees that had leaves with high N contents. Ficus, a high-NO3- species, was associated with soil exhibiting higher rates of net mineralisation and net nitrification. Low-NO3- species were evergreen perennials with low leaf N concentrations. A third group of plants, which assimilated NO3- (albeit at lower rates than the high-NO3- species), and had high-N leaves, were leguminous species. Acacia species, common in woodlands, had the highest leaf N contents of all woody species. Acacia species appeared to have the greatest potential to utilise the entire spectrum of available N sources. This versatility in N source utilisation may be important in relation to their high tissue N status and comparatively short life cycle. Differences in N utilisation are discussed in the context of species life strategies and mycorrhizal associations.
Resumo:
It has been shown previously that recombinant virus-like particles (VLPs) of papillomavirus can induce VLP-specific humoral and cellular immune responses following parenteral administration. To test whether mucosal administration of bovine papillomavirus type 1 (BPV1) VLPs could produce mucosal as well as systemic immune responses to VLPs, 50 mu g chimeric BPV1 VLPs containing an HPV16 E7 CTL epitope (BPVL1/E7 VLP) was administered intranasally to mice. After two immunisations, L1-specific serum IgG and IgA were observed. L1-specific IgG and IgA were also found in respiratory and vaginal secretions. Both serum and mucosal antibody inhibited papillomavirus VLP-induced agglutination of RBC, indicating that the antibody induced by mucosal immunisation may recognize conformational determinants associated with virus neutralisation. For comparison, VLPs were given intramuscularly, and systemic and mucosal immune responses were generally comparable following systemic or mucosal delivery. However, intranasal administration of VLP induced significantly higher local IgA response in lung, suggesting that mucosally delivered HPV VLP may be more effective for mediating local mucosal immune responses. Intranasal immunisation with HPV6b L1 VLP produced VLP-specific T proliferative responses in splenocytes, and immunisation with BPVL1 VLP containing an HPV16 E7 CTL epitope induced E7-specific CTL responses. We conclude that immunisation with papillomavirus VLPs via mucosal and intramuscular routes, without adjuvant, can elicit specific antibody at mucosal surfaces and also systemic VLP epitope specific T cell responses. These findings suggest that mucosally delivered VLPs may offer an alternative HPV VLP vaccine strategy for inducing protective humoral immunity to anogenital HPV infection, together with cell-mediated immune responses to eliminate any cells which become infected. (C) 1998 Academic Press.
Resumo:
Liver samples from rabbits killed by RHDV, collected from five States in Australia in 1996 and 1997 were analysed by RT-PCR. A 398 bp fragment of the capsid protein (VP60) gene was amplified by PCR and directly sequenced. The alignment of the nucleotide and amino acid sequences and their comparison with the original strain of the virus released in Australia indicated genetic changes after two years have been small with 98.2% to 100% identity. The constructed phylogenetic tree suggests slight differences in nucleotide substitutions in various States but there is no clear evidence of clustering of sequences according to their geographic origin. In practical terms, sequencing of viral RNA provides a means of testing the efficacy of further releases and subsequent spread of the virus if such a strategy is employed as a means of enhancing RHD as a biological control of the wild rabbit in Australia.
Resumo:
MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG: start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coil extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coil. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens. (C) 1999 Academic Press.
Resumo:
Retroviral entry into cells depends on envelope glycoproteins, whereby receptor binding to the surface-exposed subunit triggers membrane fusion by the transmembrane protein (TM) subunit. We determined the crystal structure at 2.5-Angstrom resolution of the ectodomain of gp21, the TM from human T cell leukemia virus type 1. The gp21 fragment was crystallized as a maltose-binding protein chimera, and the maltose-binding protein domain was used to solve the initial phases by the method of molecular replacement. The structure of gp21 comprises an N-terminal trimeric coiled coil, an adjacent disulfide-bonded loop that stabilizes a chain reversal, and a C-terminal sequence structurally distinct from HIV type 1/simian immunodeficiency virus gp41 that packs against the coil in an extended antiparallel fashion. Comparison of the gp21 structure with the structures of other retroviral TMs contrasts the conserved nature of the coiled coil-forming region and adjacent disulfide-bonded loop with the variable nature of the C-terminal ectodomain segment. The structure points to these features having evolved to enable the dual roles of retroviral TMs: conserved fusion function and an ability to anchor diverse surface-exposed subunit structures to the virion envelope and infected cell surface. The structure of gp21 implies that the N-terminal fusion peptide is in close proximity to the C-terminal transmembrane domain and likely represents a postfusion conformation.
Resumo:
Reverse transcription coupled with polymerase chain reaction and restriction enzyme analysis was used to characterize 12 Drosophila C virus isolates from geographically different regions. A 1.2-kb fragment was amplified from cDNA and profiles from digestion with 20 restriction enzymes were generated. Analysis of the restriction fragment data gave estimates of nucleotide divergence of 0-10% between isolates. The isolates were grouped on the basis of genetic distance estimates derived from the restriction data. For the isolates from which a single genotype could be purified, a geographical pattern in the distribution of viral genotypes was identified. The 4 Moroccan isolates were very closely related to each other, differing in only 1 restriction profile. The 2 Australian isolates were each other's closest relatives, as were the 2 isolates first recovered in France. The PCR-RFLP technique used in this study has provided us with a simple procedure which can be used to characterize DCV isolates. A single enzyme, Tag I, generated 5 distinct and diagnostic restriction fragment patterns, which allowed easy assignment of isolates to one of the five viral genotypes identified in this study. (C) 1999 Academic Press.
Resumo:
Soluble organic nitrogen, including protein and amino acids, was found to be a ubiquitous form of soil N in diverse Australian environments. Fine roots of species representative of these environments were found to be active in the metabolism of glycine. The ability to incorporate [N-15]glycine was widespread among plant species from subantarctic to tropical communities. In species from subantarctic herbfield, subtropical coral cay, subtropical rainforest and wet heathland, [N-15]glycine incorporation ranged from 26 to 45% of (NH4+)-N-15 incorporation and was 2- to 3-fold greater than (NO3-)-N-15 incorporation. Most semiarid mulga and tropical savanna woodland species incorporated [N-15]glycine and (NO3-)-N-15 in similar amounts, 18-26% of (NH4+)-N-15 incorporation. We conclude that the potential to utilise amino acids as N sources is of widespread occurrence in plant communities and is not restricted to those from low temperature regimes or where N mineralisation is limited. Seedlings of Hakea (Proteaceae) were shown to metabolise glycine, with a rapid transfer of N-15 from glycine to serine and other amino compounds. The ability to take up and metabolise glycine was unaffected by the presence of equimolar concentrations of NO3- and NH4+. Isonicotinic acid hydrazide (INH) did not inhibit the transfer of N-15-label from glycine to serine indicating that serine hydroxymethyltransferase was not active in glycine catabolism. In contrast aminooxyacetate (AOA) strongly inhibited transfer of N-15 from glycine to serine and labelling of other amino compounds, suggesting that glycine is metabolised in roots and cluster roots of Hakea via an aminotransferase.
Resumo:
A 1369 bp DNA fragment (Sc) was isolated from a full-length clone of sugarcane bacilliform badnavirus (ScBV) and was shown to have promoter activity in transient expression assays using monocot (banana, maize, millet and sorghum) and dicot plant species (tobacco, sunflower, canola and Nicotiana benthamiana). This promoter was also tested for stable expression in transgenic banana and tobacco plants. These experiments showed that this promoter could drive high-level expression of the beta-glucuronidase (GUS) reporter gene in most plant cells. The expression level was comparable to the maize ubiquitin promoter in standardised transient assays in maize. In transgenic banana plants the expression levels were variable for different transgenic lines but was generally comparable with the activities of both the maize ubiquitin promoter and the enhanced cauliflower mosaic virus (CaMV) 35S promoter. The Sc promoter appears to express in a near-constitutive manner in transgenic banana and tobacco plants. The promoter from sugarcane bacilliform virus represents a useful tool for the high-level expression of foreign genes in both monocot and dicot transgenic plants that could be used similarly to the CaMV 35S or maize polyubiquitin promoter.
Resumo:
First-instar larvae of the monarch butterfly, Danaus plexippus, a milkweed specialist, generally grew faster and survived better on leaves when latex flow was reduced by partial severance of the leaf petiole. The outcome depended on milkweed species and was related to the amount of latex produced. The outcome also may be related to the amount of cardenolide produced by the plants as a potential chemical defense against herbivory. Growth was more rapid, but survival was similar on partially severed compared with intact leaves of the high-latex/low-cardenolide milkweed, Asclepias syriaca, whereas both growth and survival were unaffected on the low-latex/low-cardenolide milkweed A. incarnata. On the low-latex/low-cardenolide milkweed A. tuberosa, both growth and survival of larvae were only marginally affected. These results contrast sharply to previous results with the milkweed, A. humistrata, in Florida, which has both high latex and high cardenolide. Larval growth and survival on A. humistrata were both increased by partially severing leaf petioles. Larval growth rates among all four milkweed species on leaves with partially severed petioles were identical, suggesting that latex and possibly the included cardenolides are important in first-instar monarch larval growth, development, and survivorship.
Resumo:
Plants require roots to supply water, nutrients and oxygen for growth. The spatial distribution of roots in relation to the macropore structure of the soil in which they are growing influences how effective they are at accessing these resources. A method for quantifying root-macropore associations from horizontal soil sections is illustrated using two black vertisols from the Darling Downs, Queensland, Australia. Two-dimensional digital images were obtained of the macropore structure and root distribution for an area 55 x 55 mm at a resolution of 64 mu m. The spatial distribution of roots was quantified over a range of distances using the K-function. In all specimens, roots were shown to be clustered at short distances (1-10 mm) becoming more random at longer distances. Root location in relation to macropores was estimated using the function describing the distance of each root to the nearest macropore. From this function, a summary variable, termed the macropore sheath, was defined. The macropore sheath is the distance from macropores within which 80% of roots are located. Measured root locations were compared to random simulations of root distribution to establish if there was a preferential association between roots and macropores. More roots were found in and around macropores than expected at random.
Resumo:
MiAMP1 is a recently discovered 76 amino acid residue, highly basic protein from the nut kernel of:Macadamia integrifolia which possesses no sequence homology to any known protein and inhibits the growth of several microbial plant pathogens in vitro while having no effect on mammalian or plant cells. It is considered to be a potentially useful tool for the genetic engineering of disease resistance in transgenic crop plants and for the design of new fungicides. The three-dimensional structure of MiAMP1 was determined through homonuclear and heteronuclear (N-15) 2D NMR spectroscopy and subsequent simulated annealing calculations with the ultimate aim of understanding the structure-activity relationships of the protein. MiAMP1 is made up of eight beta-strands which are arranged in two Greek key motifs. These Greek key motifs associate to form a Greek key beta-barrel. This structure is unique amongst plant antimicrobial proteins and forms a new class which we term the beta-barrelins. Interestingly, the structure of MiAMP1 bears remarkable similarity to a yeast killer toxin from Williopsis mrakii. This toxin acts by inhibiting beta-glucan synthesis and thereby cell wall construction in sensitive strains of yeast. The structural similarity of MiAMP1 and WmKT, which originate from plant and fungal phyla respectively, may reflect a similar mode of action. (C) 1999 Academic Press.
Resumo:
Several macrocyclic peptides (similar to 30 amino acids), with diverse biological activities, have been isolated from the Rubiaceae and Violaceae plant families over recent years. We have significantly expanded the range of known macrocyclic peptides with the discovery of 16 novel peptides from extracts of Viola hederaceae, Viola odorata and Oldenlandia affinis. The Viola plants had not previously been examined for these peptides and thus represent novel species in which these unusual macrocyclic peptides are produced. Further, we have determined the three-dimensional struc ture of one of these novel peptides, cycloviolacin O1, using H-1 NMR spectroscopy. The structure consists of a distorted triple-stranded beta-sheet and a cystine-knot arrangement of the disulfide bonds. This structure is similar to kalata B1 and circulin A, the only two macrocyclic peptides for which a structure was available, suggesting that despite the sequence variation throughout the peptides they form a family in which the overall fold is conserved. We refer to these peptides as the cyclotide family and their embedded topology as the cyclic cystine knot (CCK) motif. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals they can be separated into two subfamilies, one of which tends to contain a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-Pro peptide bond and may conceptually be regarded as a molecular Moebius strip. Here we define the structural features of the two apparent subfamilies of the CCK peptides which may be significant for the likely defense related role of these peptides within plants. (C) 1999 Academic Press.
Resumo:
Subjects with genital warts were immunized three times or more with HPV6b VLPs without adjuvant. All immunized subjects had DTH to HPV6b L1 protein. Of 32 subjects, nine had HPV6b specific antibody prior to immunization and 22 acquired antibody with immunization. VLP specific antibody increased following a single immunization in 6 of 8 subjects with low level antibody at recruitment. Complete regression of genital warts was observed in 25 of 33 evaluable subjects over the 20-week observation period. We conclude that immunization with HPV6b L1 VLPs without adjuvant induces immunity to the L1 protein epitopes recognised during natural infection, and may accelerate regression of warts. (C) 2000 Elsevier Science Ltd. All rights reserved.