962 resultados para Plant mineral nutrition
Resumo:
This paper examines the nutritional and veterinary effects of tannins on ruminants and makes some comparisons with non-ruminants. Tannin chemistry per se is not covered and readers are referred to several excellent reviews instead: (a) Okuda T et al. Heterocycles 30:1195-1218 (1990); (b) Ferreira D and Slade D. Nat Prod Rep 19:517-541 (2002); (c) Yoshida T et al. In Studies in Natural Product Chemistry. Elsevier Science, Amsterdam, pp. 395-453 (2000); (d) Khanbabaee K and van Ree T. Nat Prod Rep 18:641-649 (2001); (e) Okuda et al. Phytochemistvy 55:513-529 (2000). The effects of tannins on rumen micro-organisms are also not reviewed, as these have been addressed by others: (a) McSweeney CS et al. Anim Feed Sci Technol 91:83-93 (2001); (b) Smith AH and Mackie RI. Appl Environ Microbiol 70:1104-1115 (2004). This paper deals first with the nutritional effects of tannins in animal feeds, their qualitative and quantitative diversity, and the implications of tannin-protein complexation. It then summarises the known physiological and harmful effects and discusses the equivocal evidence of the bioavailability of tannins. Issues concerning tannin metabolism and systemic effects are also considered. Opportunities are presented on how to treat feeds with high tannin contents, and some lesser-known but successful feeding strategies are highlighted. Recent research has explored the use of tannins for preventing animal deaths from bloat, for reducing intestinal parasites and for lowering gaseous ammonia and methane emissions. Finally, several tannin assays and a hypothesis are discussed that merit further investigation in order to assess their suitability for predicting animal responses. The aim is to provoke discussion and spur readers into new approaches. An attempt is made to synthesise the emerging information for relating tannin structures with their activities. Although many plants with high levels of tannins produce negative effects and require treatments, others are very useful animal feeds. Our ability to predict whether tannin-containing feeds confer positive or negative effects will depend on interdisciplinary research between animal nutritionists and plant chemists. The elucidation of tannin structure-activity relationships presents exciting opportunities for future feeding strategies that will benefit ruminants and the environment within the contexts of extensive, semi-intensive and some intensive agricultural systems. (c) 2006 Society of Chemical Industry
Resumo:
Tannins can cause beneficial or harmful nutritional effects, but their great diversity has until now prevented a rational distinction between tannin structures and their nutritional responses. An attempt has been made to study this problem by examining the octanol-water solubilities of tannins. A relatively simple HPLC method has been developed for screening mixtures of plant tannins for their octanol-water partition coefficients (K-ow coefficients). Tannins were isolated from the fruits and leaves of different Acacia, Calliandra, Dichrostachys, and Piliostigma species, which are known to produce beneficial or harmful effects. The K-ow coefficients of these tannins ranged from 0.061 to 13.9, average coefficients of variation were 9.2% and recoveries were 107%. Acacia nilotica fruits and leaves had the highest K-ow coefficients, that is, 2.0 and 13.9, respectively. These A. nilotica products also have high concentrations of tannins. The combined effects of high octanol solubilities and high tannin concentrations may explain their negative effects on animal nutrition and health. It is known that compounds with high octanol solubilities are more easily absorbed into tissues, and it is, therefore, proposed that such compounds are more likely to cause toxicity problems especially if consumed in large quantities. According to the literature, tannins in human foods tend to have low K-ow coefficients, and this was confirmed for the tannins in Piliostigma thonningii fruits. Therefore, unconventional feeds or browse products should be screened not only for their tannin concentrations but also for low octanol-water partition coefficients in order to identify nutritionally safe feeds and to avoid potentially toxic feeds.
Resumo:
The breakdown of glucosinolates, a group of thioglucoside compounds found in cruciferous plants, is catalysed by dietary or microbial myrosinase. This hydrolysis releases a range of breakdown products among which are the isothiocyanates, which have been implicated in the cancer-protective effects of cruciferous vegetables. The respective involvement of plant myrosinase and gut bacterial myrosinase in the conversion, in vivo, of glucosinolates into isothiocyanates was investigated in sixteen Fischer 344 rats. Glucosinolate hydrolysis in gnotobiotic rats harbouring a whole human faecal flora (Flora+) was compared with that in germ-free rats (Flora-). Rats were offered a diet where plant myrosinase was either active (Myro+) or inactive (Myro-). The conversion of prop-2-enyl glucosinolate and benzyl glucosinolate to their related isothiocyanates, allyl isothiocyanate and benzyl isothiocyanate, was estimated using urinary mercapturic acids, which are endproducts of isothiocyanate metabolism. The highest excretion of urinary mercapturic acids was found when only plant myrosinase was active (Flora-, Myro+ treatment). Lower excretion was observed when both plant and microbial myrosinases were active (Flora+, Myro+ treatment). Excretion of urinary mercapturic acids when only microbial myrosinase was active (Flora+, Myro- treatment) was low and comparable with the levels in the absence of myrosinase (Flora-, Myro- treatment). No intact glucosinolates were detected in the faeces of rats from the Flora+ treatments confirming the strong capacity of the microflora to break down glucosinolates. The results confirm that plant myrosinase can catalyse substantial release of isothiocyanates in vivo. The results also suggest that the human microflora may, in some circumstances, reduce the proportion of isothiocyanates available for intestinal absorption.
Resumo:
Background: Greatly increasing dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA)] or fish oil [rich in the long-chain n-3 PUFAs eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] can reduce markers of immune cell function. The effects of more modest doses are unclear, and it is not known whether ALA has the same effects as its long-chain derivatives. Objective: The objective was to determine the effects of enriching the diet with ALA or EPA+DHA on immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes. Design: In a placebo-controlled, double-blind, parallel study, 150 healthy men and women aged 25-72 y were randomly assigned to I of 5 interventions: placebo (no additional n-3 PUFAs), 4.5 or 9.5 g ALA/d, and 0.77 or 1.7 g EPA+DHA/d for 6 mo. The n-3 PUFAs were provided in 25 g fat spread plus 3 oil capsules. Blood samples were taken at 0, 3, and 6 mo. Results: The fatty acid composition of peripheral blood mononuclear cell phospholipids was significantly different in the groups with higher intakes of ALA or EPA+DHA. The interventions did not alter the percentages of neutrophils or monocytes engaged in phagocytosis of Escherichia coli or in phagocytic activity, the percentages of neutrophils or monocytes undergoing oxidative burst in response to E. coli or phorbol ester, the proliferation of lymphocytes in response to a T cell mitogen, the production of numerous cytokines by monocytes and lymphocytes, or the in vivo delayed-type hypersensitivity response. Conclusion: An intake of f less than or equal to9.5 g ALA/d or less than or equal to1.7 g EPA+DHA/d does not alter the functional activity of neutrophils, monocytes, or lymphocytes, but it changes the fatty acid composition of mononuclear cells.
Resumo:
Background: Dietary a-linolenic acid (ALA) can be converted to long-chain n-3 polyunsaturated fatty acids (PUFAs) in humans and may reproduce some of the beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease risk factors. Objective: This study aimed to compare the effects of increased dietary intakes of ALA and EPA+DHA on a range of atherogenic risk factors. Design: This was a placebo-controlled, parallel study involving 150 moderately hyperlipidemic subjects randomly assigned to 1 of 5 interventions: 0.8 or 1.7 g EPA+DHA/d, 4.5 or 9.5 g ALA/d, or an n-6 PUFA control for 6 mo. Fatty acids were incorporated into 25 g of fat spread and 3 capsules to be consumed daily. Results: The change in fasting or postprandial lipid, glucose, or insulin concentrations or in blood pressure was not significantly different after any of the n-3 PUFA interventions compared with the n-6 PUFA control. The mean (+/-SEM) change in fasting triacylglycerols after the 1.7-g/d EPA+DHA intervention (-7.7 +/- 4.99%) was significantly (P < 0.05) different from the change after the 9.5-g/d ALA intervention (10.9 +/- 4.5%). The ex vivo susceptibility of LDL to oxidation was higher after the 1.7-g/d EPA+DHA intervention than after the control and ALA interventions (P < 0.05). There was no significant change in plasma a-tocopherol concentrations or in whole plasma antioxidant status in any of the groups. Conclusion: At estimated biologically equivalent intakes, dietary ALA and EPA+DHA have different physiologic effects.
Resumo:
Dietary alpha-linolenic acid (ALA) can be converted to long-chain (n-3) PUFA in humans and may potentially reproduce the beneficial effects of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on risk factors for coronary heart disease (CHID). This study compared the effects of increased intakes of ALA with those of dietary EPA and DHA on blood coagulation and fibrinolytic factors in fasting subjects. A placebo-controlled, parallel study was conducted in 150 moderately hyperlipidemic subjects, age 25-72 y. Subjects were randomly assigned to one of five interventions and consumed a total intake of 0.8 or 1.7g/d EPA+DHA, 4.5 or 9.5g/d ALA or control (linoleic acid; LA) for 6 mo. Fatty acids were incorporated into 25 g of fat spread, which replaced the subject's normal spread and three capsules. Long-term supplementation with either dietary EPA+DHA or estimated biologically equivalent amounts of ALA did not affect factors VIIa, VIIc, VIIag, XIIa, XIIag, fibrinogen concentrations, plasminogen activator inhibitor-1 or tissue plasminogen activator activity compared with the control. (n-3) PUFA of plant or marine origin do not differ from one another or from LA in their effect on a range of blood coagulation and fibrinolytic factors.
Resumo:
Background and aim Concentrations of essential minerals in plant foods may have declined in modern high-yielding cultivars grown with large applications of nitrogen fertilizer (N). We investigated the effect of dwarfing alleles and N rate on mineral concentrations in wheat. Methods Gibberellin (GA)-insensitive reduced height (Rht) alleles were compared in near isogenic wheat lines. Two field experiments comprised factorial combinations of wheat variety backgrounds, alleles at the Rht-B1 locus (rht-B1a, Rht-B1b, Rht-B1c), and different N rates. A glasshouse experiment also included Rht-D1b and Rht-B1b+D1b in one background. Results In the field, depending on season, Rht-B1b increased crop biomass, dry matter (DM) harvest index, grain yield, and the economically-optimal N rate (Nopt). Rht-B1b did not increase uptake of Cu, Fe, Mg or Zn so these minerals were diluted in grain. Nitrogen increased DM yield and mineral uptake so grain concentrations were increased (Fe in both seasons; Cu, Mg and Zn in one season). Rht-B1b reduced mineral concentrations at Nopt in the most N responsive season. In the glasshouse experiment, grain yield was reduced, and mineral concentrations increased, with Rht allele addition. Conclusion Effects of Rht alleles on Fe, Zn, Cu and Mg concentrations in wheat grain are mostly due to their effects on DM, rather than of GA-insensitivity on Nopt or mineral uptake. Increased N requirement in semi-dwarf varieties partly offsets this dilution effect.
Resumo:
The soybean-derived protease inhibitor, Bowman-Birk inhibitor (BBI), is currently showing great promise as a novel cancer chemopreventive agent. In contrast to the wealth of research conducted on this compound, the anticancer effects of protease inhibitors isolated from other leguminous sources have received limited attention. In the current study, 7 protease inhibitor concentrates (PICs) were isolated from various leguminous sources (including soybean) and characterized. The effects of PICs on the proliferation of breast and prostate cancer cells were investigated in vitro. Chickpea PIC significantly inhibited the viability of MDA-MB-231 breast cancer and PC-3 and LNCaP prostate cancer cells at all concentrations tested (25-400 μg/ml). In addition, kidney bean (200, 400 μg/ml), soybean (50, 100 μg/ml), and mungbean (100, 200 μg/ml) PICs inhibited LNCaP cell viability. These findings suggest that leguminous PICs may possess similar anticancer properties to that of soybean BBI and deserve further study as possible chemopreventive agents.
Resumo:
To understand whether genotypic variation in root-associated phosphatase activities in wheat impacts on its ability to acquire phosphorus (P), various phosphatase activities of roots were measured in relation to the utilization of organic P substrates in agar, and the P-nutrition of plants was investigated in a range of soils. Root-associated phosphatase activities of plants grown in hydroponics were measured against different organic P substrates. Representative genotypes were then grown in both agar culture and in soils with differing organic P contents and plant biomass and P uptake were determined. Differences in the activities of both root-associated and exuded phosphodiesterase and phosphomonoesterase were observed, and were related to the P content of plants supplied with either ribonucleic acid or glucose 6-phosphate, respectively, as the sole form of P. When the cereal lines were grown in different soils, however, there was little relationship between any root-associated phosphatase activity and plant P uptake. This indicates that despite differences in phosphatase activities of cereal roots, such variability appears to play no significant role in the P-nutrition of the plant grown in soil, and that any benefit derived from the hydrolysis of soil organic P is common to all genotypes.
Resumo:
The calcium (Ca) concentration of plant shoot tissues varies systematically between angiosperm orders. The phylogenetic variation in the shoot concentration of other mineral nutrients has not yet been described at an ordinal level. The aims of this study were (1) to quantify the shoot mineral concentration of different angiosperm orders, (2) to partition the phylogenetic variation in shoot mineral concentration between and within orders, (3) to determine if the shoot concentration of different minerals are correlated across angiosperm species, and (4) to compare experimental data with published ecological survey data on 81 species sampled from their natural habitats. Species, selected pro rata from different angiosperm orders, were grown in a hydroponic system under a constant external nutrient regime. Shoots of 117 species were sampled during vegetative growth. Significant variation in shoot carbon (C), calcium (Ca), potassium (K), and magnesium (Mg) concentration occurred between angiosperm orders. There was no evidence for systematic differences in shoot phosphorus (P) or organic-nitrogen (N) concentration between orders. At a species level, there were strong positive correlations between shoot Ca and Mg concentration, between shoot P and organic-N concentration, and between shoot K concentration and shoot fresh weight:dry weight ratio. Shoot C and cation concentration correlated negatively at a species level. Species within the Poales and the Caryophyllales had distinct shoot mineralogies in both the designed experiment and in the ecological survey.
Resumo:
Irrigation is a major husbandry tool, vital for world food production and security. The purpose of this review is twofold:- firstly drawing attention to the beneficial and deleterious aspects of irrigation resulting from interactions with the microbial world; secondly, forming a basis for encouraging further research and development. Irrigation is for example, a valuable component in the control of some soil borne pathogens such as Streptomyces scabies, the cause of potato common scab and Fusarium cubense, a cause of banana wilt. By contrast, applying irrigation encourages some foliar pathogens and factors such as splash dispersal of propagules and the retention of leaf wetness are important elements in the successful establishment of disease foci. Irrigation applied at low levels in the canopy directly towards the stem bases and root zones of plants also provides means encouraging disease development. Irrigation also offers means for the direct spread of microbes such as water borne moulds, Oomycetes, and plasmodial pathogens coming from populations present in the water supply. The presence of plant disease causing microbes in sources of irrigation has been associated with outbreaks of diseases such as clubroot (Plasmodiophora brassicae). Irrigation can be utilised as a means for applying agrochemicals, fungigation. The developing technologies of water restriction and root zone drying also have an impact on the success of disease causing organisms. This is an emerging technology and its interactions with benign and pathogenic microbes require consideration.
Resumo:
Aims Current estimates of soil organic carbon (SOC) are based largely on surficial measurements to depths of 0.3 to 1 m. Many of the world’s soils greatly exceed 1 m depth and there are numerous reports of biological activity to depths of many metres. Although SOC storage to depths of up to 8 m has been previously reported, the extent to which SOC is stored at deeper depths in soil profiles is currently unknown. This paper aims to provide the first detailed analysis of these previously unreported stores of SOC. Methods Soils from five sites in the deeply weathered regolith in the Yilgarn Craton of south-western Australia were sampled and analysed for total organic carbon by combustion chromatography. These soils ranged between 5 and 38 m (mean 21 m) depth to bedrock and had been either recently reforested with Pinus pinaster or were under agriculture. Sites had a mean annual rainfall of between 399 and 583 mm yr−1. Results The mean SOC concentration across all sites was 2.30 ± 0.26 % (s.e.), 0.41 ± 0.05 % and 0.23 ± 0.04 % in the surface 0.1, 0.1–0.5 and 0.5 to 1.0 m increments, respectively. The mean value between 1 and 5 m was 0.12 ± 0.01 %, whereas between 5 and 35 m the values decreased from 0.04 ± 0.002 % to 0.03 ± 0.003 %. Mean SOC mass densities for each of the five locations varied from 21.8–37.5 kg C m−2, and were in toto two to five times greater than would be reported with sampling to a depth of 0.5 m. Conclusions This finding may have major implications for estimates of global carbon storage and modelling of the potential global impacts of climate change and land-use change on carbon cycles. The paper demonstrates the need for a reassessment of the current arbitrary shallow soil sampling depths for assessing carbon stocks, a revision of global SOC estimates and elucidation of the composition and fate of deep carbon in response to land use and climate change
Resumo:
Interactions between host nutrition and feeding behaviour are central to understanding the pathophysiological consequences of infections of the digestive tract with parasitic nematodes. The manipulation of host nutrition provides useful options to control gastrointestinal nematodes as a component of an integrated strategy. Focused mainly on the Hameonchus contortus infection model in small ruminants, this chapter (i) illustrates the relationship between quantitative (macro- and micro-nutrients) and qualitative (plant secondary metabolites) aspects of host nutrition and nematode infection, and (ii) shows how basic studies aimed at addressing some generic questions can help provide solutions, despite the considerable diversity of epidemiological situations and breeding systems.
Resumo:
Background and Aims Several animals that live on bromeliads can contribute to plant nutrition through nitrogen provisioning (digestive mutualism). The bromeliad-living spider Psecas chapoda (Salticidae) inhabits and breeds on Bromelia balansae in regions of South America, but in specific regions can also appear on Ananas comosus (pineapple) plantations and Aechmea distichantha. Methods Using isotopic and physiological methods in greenhouse experiments, the role of labelled ((15)N) spider faeces and Drosophila melanogaster flies in the nutrition and growth of each host plant was evaluated, as well as seasonal variation in the importance of this digestive mutualism. Key Results Spiders contributed 0.6 +/- 0.2% (mean +/- s.e.; dry season) to 2.7 +/- 1% (wet season) to the total nitrogen in B. balansae, 2.4 +/- 0.4% (dry) to 4.1 +/- 0.3% (wet) in An. comosus and 3.8 +/- 0.4% (dry) to 5 +/- 1% (wet) in Ae. distichantha. In contrast, flies did not contribute to the nutrition of these bromeliads. Chlorophylls and carotenoid concentrations did not differ among treatments. Plants that received faeces had higher soluble protein concentrations and leaf growth (RGR) only during the wet season. Conclusions These results indicate that the mutualism between spiders and bromeliads is seasonally restricted, generating a conditional outcome. There was interspecific variation in nutrient uptake, probably related to each species` performance and photosynthetic pathways. Whereas B. balansae seems to use nitrogen for growth, Ae. distichantha apparently stores nitrogen for stressful nutritional conditions. Bromeliads absorbed more nitrogen coming from spider faeces than from flies, reinforcing the beneficial role played by predators in these digestive mutualisms.
Resumo:
Objective: This study reports the effects of feeding with a combination of inulin-type fructans (ITF) and fish oil (FO) on mineral absorption and bioavailability as part of a semipurified diet offered to rats. Methods: Male Wistar rats (n = 24) were fed a 15% lipid diet (soybean oil [SO] or a 1:0.3 fish:soybean oil mixture [FSO]) and diets containing the same sources of lipids supplemented with 10% ITF (Raftilose Synergy 1) ad libitum for 15 d. Feces and urine were collected for mineral analyses during the last 5 d of the test period. Fatty acid composition was determined in liver and cecal mucosa homogenates. Liver and bone mineral analyses were performed by atomic absorption spectrophotometry. Bone biomechanical analyses were evaluated by a 3-point bending test. Results: Compared with the controls, ITF-fed rats had enlarged ceca and a significant decrease in cecal content pH (P < 0.001). The apparent mineral absorption was improved in these rats, and this effect was enhanced by dietary combination with FO for all minerals except for magnesium. Addition of ITF to the diet resulted in higher bone mineral content (calcium and zinc) and bone strength, but increased bone mineral content was only statistically significant in FO-fed animals. A decrease in liver iron stores (P = 0.015) was observed in rats fed FO, considering that ITF consumption returned to levels comparable to the SO control group. Conclusion: These findings confirm the positive influence of ITF on mineral bioavailability, which was potentiated by addition of FO to the diet. (C) 2009 Published by Elsevier Inc.