968 resultados para Plant Communities


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La contínua descàrrega de nutrients, sobretot fosfats i nitrogen, és la major causa d'eutrofització dels ecosistemes aquàtics. Els sistemes de tractament basats en aiguamolls construïts s'han emprat per reduir ells nivells de nitrogen a l'aigua com a alternativa de baix cost als mètodes de depuració convencionals. L'eliminació del nitrogen a aquests sistemes depèn en bona part de la vegetació, i l'alternança de condicions aeròbiques i anaeròbiques per promoure els processos de nitrificació i desnitrificació. En aquest treball hem volgut investigar les activitats microbianes de nitrificació i desnitrificació en relació a dues espècies de plantes macròfites en un sistema d'aiguamolls de tractament de flux superficial (FS-SAC), dissenyat per minimitzar l'impacte de l'alliberament d'aigua carregada de nutrients a la reserva natural dels Aiguamolls de l'Empordà (Girona, Espanya).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have compared properties of roots from different lines (genotypes) of tobacco raised either in tissue culture or grown from seed. The different lines included unmodified plants and plants modified to express reduced activity of the enzyme cinnamoyl-CoA reductase, which has a pivotal role in lignin biosynthesis. The size and structure of the rhizosphere microbial community, characterized by adenosine triphosphate and phospholipid fatty acid analyses, were related to root chemistry (specifically the soluble carbohydrate concentration) and decomposition rate of the roots. The root material from unmodified plants decomposed faster following tissue culture compared with seed culture, and the faster decomposing material had significantly higher soluble carbohydrate concentrations. These observations are linked to the larger microbial biomass and greater diversity of the rhizosphere communities of tissue culture propagated plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of indirect interactions in structuring communities is becoming increasingly recognised. Plant fungi can bring about changes in plant chemistry which may affect insect herbivores that share the same plant, and hence the two may interact indirectly. This study investigated the indirect effects of a fungal pathogen (Marssonina betulae) of silver birch (Betula pendula) on an aphid (Euceraphis betulae), and the processes underpinning the interaction. There was a strong positive association between natural populations of the aphid and leaves bearing high fungal infection. In choice tests, significantly more aphids settled on leaves inoculated with the fungus than on asymptomatic leaves. Individual aphids reared on inoculated leaves were heavier, possessed longer hind tibiae and displayed enhanced embryo development compared with aphids reared on asymptomatic leaves; population growth rate was also positively correlated with fungal infection when groups of aphids were reared on inoculated branches. Changes in leaf chemistry were associated with fungal infection with inoculated leaves containing higher concentrations of free-amino acids. This may reflect a plant-initiated response to fungal attack in which free amino acids from the degradation of mesophyll cells are translocated out of infected leaves via the phloem. These changes in plant chemistry are similar to those occurring during leaf senescence, and are proposed as the mechanistic basis for the positive interaction between the fungus and aphid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flavonoids are a diverse class of polyphenolic compounds that are produced as a result of plant secondary metabolism. They are known to play a multifunctional role in rhizospheric plant-microbe and plant-plant communication. Most familiar is their function as a signal in initiation of the legume-rhizobia symbiosis, but, flavonoids may also be signals in the establishment of arbuscular mycorrhizal symbiosis and are known agents in plant defence and in allelopathic interactions. Flavonoid perception by, and impact on, their microbial targets (e.g. rhizobia, plant pathogens) is relatively well characterized. However, potential impacts on 'non-target' rhizosphere inhabitants ('non-target' is used to distinguish those microorganisms not conventionally known as targets) have not been thoroughly investigated. Thus, this review first summarizes the conventional roles of flavonoids as nod gene inducers, phytoalexins and allelochemicals before exploring questions concerning 'non-target' impacts. We hypothesize that flavonoids act to shape rhizosphere microbial community structure because they represent a potential source of carbon and toxicity and that they impact on rhizosphere function, for example, by accelerating the biodegradation of xenobiotics. We also examine the reverse question, 'how do rhizosphere microbial communities impact on flavonoid signals?' The presence of microorganisms undoubtedly influences the quality and quantity of flavonoids present in the rhizosphere, both through modification of root exudation patterns and microbial catabolism of exudates. Microbial alteration and attenuation of flavonoid signals may have ecological consequences for below-ground plant-microbe and plant-plant interaction. We have a lack of knowledge concerning the composition, concentration and bioavailability of flavonoids actually experienced by microbes in an intact rhizosphere, but this may be addressed through advances in microspectroscopic and biosensor techniques. Through the use of plant mutants defective in flavonoid biosynthesis, we may also start to address the question of the significance of flavonoids in shaping rhizosphere community structure and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have compared properties of roots from different lines (genotypes) of tobacco raised either in tissue culture or grown from seed. The different lines included unmodified plants and plants modified to express reduced activity of the enzyme cinnamoyl-CoA reductase, which has a pivotal role in lignin biosynthesis. The size and structure of the rhizosphere microbial community, characterized by adenosine triphosphate and phospholipid fatty acid analyses, were related to root chemistry (specifically the soluble carbohydrate concentration) and decomposition rate of the roots. The root material from unmodified plants decomposed faster following tissue culture compared with seed culture, and the faster decomposing material had significantly higher soluble carbohydrate concentrations. These observations are linked to the larger microbial biomass and greater diversity of the rhizosphere communities of tissue culture propagated plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community composition. 2 For two grassland systems, one on a sandy soil in the Netherlands and one on a chalk soil in the United Kingdom, we investigated how individual plant species grown in monocultures changed abiotic and biotic soil conditions. Then, we determined feedback effects of these soils to plants of the same or different species. Feedback effects were analysed at the level of plant species and plant taxonomic groups (grasses vs. forbs). 3 In the sandy soils, plant species differed in their effects on soil chemical properties, in particular potassium levels, but PLFA (phospholipid fatty acid) signatures of the soil microbial community did not differ between plant species. The effects of soil chemical properties were even greater when grasses and forbs were compared, especially because potassium levels were lower in grass monocultures. 4 In the chalk soil, there were no effects of plant species on soil chemical properties, but PLFA profiles differed significantly between soils from different monocultures. PLFA profiles differed between species, rather than between grasses and forbs. 5 In the feedback experiment, all plant species in sandy soils grew less vigorously in soils conditioned by grasses than in soils conditioned by forbs. These effects correlated significantly with soil chemical properties. None of the seven plant species showed significant differences between performance in soil conditioned by the same vs. other plant species. 6 In the chalk soil, Sanguisorba minor and in particular Briza media performed best in soil collected from conspecifics, while Bromus erectus performed best in soil from heterospecifics. There was no distinctive pattern between soils collected from forb and grass monocultures, and plant performance could not be related to soil chemical properties or PLFA signatures. 7 Our study shows that mechanisms of plant-soil feedback can depend on plant species, plant taxonomic (or functional) groups and site-specific differences in abiotic and biotic soil properties. Understanding how plant species can influence their rhizosphere, and how other plant species respond to these changes, will greatly enhance our understanding of the functioning and stability of ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent concerns regarding the decline of plant and pollinator species, and the impact on ecosystem functioning, has focused attention on the local and global threats to bee diversity. As evidence for bee declines is now accumulating from over broad taxonomic and geographic scales, we review the role of ecology in bee conservation at the levels of species, populations and communities. Bee populations and communities are typified by considerable spatiotemporal variation; whereby autecological traits, population size and growth rate, and plant-pollinator network architecture all play a role in their vulnerability to extinction. As contemporary insect conservation management is broadly based on species- and habitat-targeted approaches, ecological data will be central to integrating management strategies into a broader, landscape scale of dynamic, interconnected habitats capable of delivering bee conservation in the context of global environmental change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mediterranean landscapes comprise a complex mosaic of different habitats that vary in the diversity of their floral communities, pollinator communities and pollination services. Using the Greek Island of Lesvos as a model system, we assess the biodiversity value of six common habitats and measure ecosystemic 'health' using pollen grain deposition in three core flowering plants as a measure of pollination services. Three fire-driven habitats were assessed: freshly burnt areas, fully regenerated pine forests and intermediate age scrub; in addition we examined oak woodlands, actively managed olive groves and groves that had been abandoned from agriculture. Oak woodlands, pine forests and managed olive groves had the highest diversity of bees. The habitat characteristics responsible for structuring bee communities were: floral diversity, floral abundance, nectar energy availability and the variety of nectar resources present. Pollination services in two of our plant species, which were pollinated by a limited sub-set of the pollinator community, indicated that pollination levels were highest in the burnt and mature pine habitats. The third species, which was open to all flower visitors, indicated that oak woodlands had the highest levels of pollination from generalist species. Pollination was always more effective in managed olive groves than in abandoned groves. However, the two most common species of bee, the honeybee and a bumblebee, were not the primary pollinators within these habitats. We conclude that the three habitats of greatest overall value for plant-pollinator communities and provision of the healthiest pollination services are pine forests, oak woodland and managed olive groves. We indicate how the highest value habitats may be maintained in a complex landscape to safeguard and enhance pollination function within these habitats and potentially in adjoining agricultural areas. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollinators provide essential ecosystem services, and declines in some pollinator communities around the world have been reported. Understanding the fundamental components defining these communities is essential if conservation and restoration are to be successful. We examined the structure of plant-pollinator communities in a dynamic Mediterranean landscape, comprising a mosaic of post-fire regenerating habitats, and which is a recognized global hotspot for bee diversity. Each community was characterized by a highly skewed species abundance distribution, with a few dominant and many rare bee species, and was consistent with a log series model indicating that a few environmental factors govern the community. Floral community composition, the quantity and quality of forage resources present, and the geographic locality organized bee communities at various levels: (1) The overall structure of the bee community (116 species), as revealed through ordination, was dependent upon nectar resource diversity (defined as the variety of nectar volume-concentration combinations available), the ratio of pollen to nectar energy, floral diversity, floral abundance, and post-fire age. (2) Bee diversity, measured as species richness, was closely linked to floral diversity (especially of annuals), nectar resource diversity, and post-fire age of the habitat. (3) The abundance of the most common species was primarily related to post-fire age, grazing intensity, and nesting substrate availability. Ordination models based on age-characteristic post-fire floral community structure explained 39-50% of overall variation observed in bee community structure. Cluster analysis showed that all the communities shared a high degree of similarity in their species composition (27-59%); however, the geographical location of sites also contributed a smaller but significant component to bee community structure. We conclude that floral resources act in specific and previously unexplored ways to modulate the diversity of the local geographic species pool, with specific disturbance factors, superimposed upon these patterns, mainly affecting the dominant species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The habitat components determining the structure of bee communities are well known when considering foraging resources; however, there is little data with respect to the role of nesting resources. 2. As a model system this study uses 21 diverse bee communities in a Mediterranean landscape comprising a variety of habitats regenerating after fire. The findings clearly demonstrate that a variety of nesting substrates and nest building materials have key roles in organising the composition of bee communities. 3. The availability of bare ground and potential nesting cavities were the two primary factors influencing the structure of the entire bee community, the composition of guilds, and also the relative abundance of the dominant species. Other nesting resources shown to be important include availability of steep and sloping ground, abundance of plant species providing pithy stems, and the occurrence of pre-existing burrows. 4. Nesting resource availability and guild structure varied markedly across habitats in different stages of post-fire regeneration; however, in all cases, nest sites and nesting resources were important determinants of bee community structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R. H. Whittaker's idea that plant diversity can be divided into a hierarchy of spatial components from alpha at the within-habitat scale through beta for the turnover of species between habitats to gamma along regional gradients implies the underlying existence of alpha, beta, and gamma niches. We explore the hypothesis that the evolution of a, (3, and gamma niches is also hierarchical, with traits that define the a niche being labile, while those defining a and 7 niches are conservative. At the a level we find support for the hypothesis in the lack of close significant phylogenetic relationship between meadow species that have similar a niches. In a second test, a niche overlap based on a variety of traits is compared between congeners and noncongeners in several communities; here, too, there is no evidence of a correlation between a niche and phylogeny. To test whether beta and gamma niches evolve conservatively, we reconstructed the evolution of relevant traits on evolutionary trees for 14 different clades. Tests against null models revealed a number of instances, including some in island radiations, in which habitat (beta niche) and elevational maximum (an aspect of the gamma niche) showed evolutionary conservatism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buffer strips are refuges for a variety of plants providing resources, such as pollen, nectar and seeds, for higher trophic levels, including invertebrates, mammals and birds. Margins can also harbour plant species that are potentially injurious to the adjacent arable crop (undesirable species). Sowing perennial species in non-cropped buffer strips can reduce weed incidence, but limits the abundance of annuals with the potential to support wider biodiversity (desirable species). We investigated the responses of unsown plant species present in buffer strips established with three different seed mixes managed annually with three contrasting management regimes (cutting, sward scarification and selective graminicide). Sward scarification had the strongest influence on the unsown desirable (e.g. Sonchus spp.) and unsown pernicious (e.g. Elytrigia repens) species, and was generally associated with higher cover values of these species. However, abundances of several desirable weed species, in particular Poa annua, were not promoted by scarification. The treatments of cutting and graminicide tended to have negative impacts on the unsown species, except for Cirsium vulgare, which increased with graminicide application. Differences in unsown species cover between seed mixes were minimal, although the grass-only mix was more susceptible to establishment by C. vulgare and Galium aparine than the two grass and forb mixes. Annual scarification can enable desirable annuals and sown perennials to co-exist, however, this practice can also promote pernicious species, and so is unlikely to be widely adopted as a management tool in its current form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flood-plain meadows (Alopecurus-Sanguisorba grassland) are a floristically rich community of conservation importance throughout Europe. Declines in their distribution due in part to modern farming practices mean they now cover less than 1500 ha in the UK. To investigate the effect of grazing regime during the re-creation of this grassland type, target plant species were sown onto ex-arable land during 1985. Traditional management, based on a July hay cut followed by aftermath grazing was subsequently instigated, and the site was divided into replicated grazing regimes of cattle, sheep and an un-grazed control. Plant and beetle assemblages were sampled and compared to those of target flood-plain meadows and improved grassland communities. Within the re-creation treatments the absence of aftermath grazing reduced beetle abundances and species richness. Assemblages of plants were closest to that of the target flood-plain meadow under sheep grazing, although this differed little from cattle grazing. Beetle species assemblages and functional group structure were, however, closest to the target grassland under cattle grazing. For all taxa the greatest resilience to succession to the target flood-plain meadow occurred when grazing was not part of the management prescription. Although successful re-creation had not been achieved for either the plants or beetles, cutting followed by aftermath cattle grazing has provided the best management to date. (c) 2006 Elsevier B.V. All rights reserved.