934 resultados para Physical mechanisms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Study Rationale Being physically active is a major contributor to both physical and mental health. More specifically, being physically active lowers risk of coronary heart disease, high blood pressure, stroke, metabolic syndrome (MetS), diabetes, certain cancers and depression, and increases cognitive function and wellbeing. The physiological mechanisms that occur in response to physical activity and the impact of total physical activity and sedentary behaviour on cardiometabolic health have been extensively studied. In contrast, limited data evaluating the specific effects of daily and weekly patterns of physical behaviour on cardiometabolic health exist. Additionally, no other study has examined interrelated patterns and minute-by-minute accumulation of physical behaviour throughout the day across week days in middle-aged adults. Study Aims The overarching aims of this thesis are firstly to describe patterns of behaviour throughout the day and week, and secondly to explore associations between these patterns and cardiometabolic health in a middle-aged population. The specific objectives are to: 1 Compare agreement between the International Physical Activity Questionnaire-Short Form (IPAQ-SF) and GENEActiv accelerometer-derived moderate-to-vigorous (MVPA) activity and secondly to compare their associations with a range of cardiometabolic and inflammatory markers in middle-aged adults. 2 Determine a suitable monitoring frame needed to reliably capture weekly, accelerometer-measured, activity in our population. 3 Identify groups of participants who have similar weekly patterns of physical behaviour, and determine if underlying patterns of cardiometabolic profiles exist among these groups. 4 Explore the variation of physical behaviour throughout the day to identify whether daily patterns of physical behaviour vary by cardiometabolic health. Methods All results in this thesis are based on data from a subsample of the Mitchelstown Cohort; 475 (46.1% males; mean aged 59.7±5.5 years) middle-aged Irish adults. Subjective physical activity levels were assessed using the IPAQ-SF. Participants wore the wrist GENEActiv accelerometer for 7 consecutive days. Data was collected at 100Hz and summarised into a signal magnitude vector using 60s epochs. Each time interval was categorised based on validated cut-offs. Data on cardiometabolic and inflammatory markers was collected according to standard protocol. Cardiometabolic outcomes (obesity, diabetes, hypertension and MetS) were defined according to internationally recognised definitions by World Health Organisation (WHO) and Irish Diabetes Federation (IDF). Results The results of the first chapter suggest that the IPAQ-SF lacks the sensitivity to assess patterning of activity and guideline adherence and assessing the relationship with cardiometabolic and inflammatory markers. Furthermore, GENEActiv accelerometer-derived MVPA appears to be better at detecting relationships with cardiometabolic and inflammatory markers. The second chapter examined variations in day-to-day physical behaviour levels between- and within-subjects. The main findings were that Sunday differed from all other days in the week for sedentary behaviour and light activity and that a large within-subject variation across days of the week for vigorous activity exists. Our data indicate that six days of monitoring, four weekdays plus Saturday and Sunday, are required to reliably estimate weekly habitual activity in all activity intensities. In the next chapter, latent profile analysis of weekly, interrelated patterns of physical behaviour identified four distinct physical behaviour patterns; Sedentary Group (15.9%), Sedentary; Lower Activity Group (28%), Sedentary; Higher Activity Group (44.2%) and a Physically Active Group (11.9%). Overall the Sedentary Group had poorer outcomes, characterised by unfavourable cardiometabolic and inflammatory profiles. The remaining classes were characterised by healthier cardiometabolic profiles with lower sedentary behaviour levels. The final chapter, which aimed to compare daily cumulative patterns of minute-by-minute physical behaviour intensities across those with and without MetS, revealed significant differences in weekday and weekend day MVPA. In particular, those with MetS start accumulating MVPA later in the day and for a shorted day period. Conclusion In conclusion, the results of this thesis add to the evidence base regards an optimal monitoring period for physical behaviour measurement to accurately capture weekly physical behaviour patterns. In addition, the results highlight whether weekly and daily distribution of activity is associated with cardiometabolic health and inflammatory profiles. The key findings of this thesis demonstrate the importance of daily and weekly physical behaviour patterning of activity intensity in the context of cardiometabolic health risk. In addition, these findings highlight the importance of using physical behaviour patterns of free-living adults observed in a population-based study to inform and aid health promotion activity programmes and primary care prevention and treatment strategies and development of future tailored physical activity based interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The so-called toxic triad of factors linked to cancer, namely obesity, poor cardiorespiratory fitness and physical inactivity, increase the risk of cancer and, when cancer is present, worsen its prognosis. Thus, obesity and a sedentary lifestyle have been linked to an elevated cancer risk whereas regular physical exercise and good cardiorespiratory function (CRF) diminish this risk. Despite genetic risk factors, there is evidence to show that some lifestyle modifications are capable of reducing the incidence of cancer and its associated morbidity and mortality. Regular physical exercise targeted at maintaining body weight within healthy limits and improving CRF will reduce a person's cancer risk and, once diagnosed, will also improve its prognosis, reducing mortality and the risk of disease recurrence through similar effects. In this review, we describe how physical activity can be used as a pleiotropic, coadjuvant tool to minimize the toxic triad for cancer and update the mechanisms proposed to date for the effects observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue mechanics and cellular interactions influence every single cell in our bodies to drive morphogenesis. However, little is known about mechanisms by which cells sense physical forces and transduce them from the cytoskeleton to the nucleus to control gene expression and stem cell fate. We have identified a novel nuclear-mechanosensor complex, consisting of the nuclear membrane protein emerin (Emd), actin and non-muscle myosin IIA (NMIIA), that regulates transcription, chromatin remodeling and lineage commitment. Force-induced enrichment of Emd at the outer nuclear membrane leads to a compensation between H3K9me2,3 and H3K27me3 on constitutive heterochromatin. This strain-induced epigenetic switch is accompanied by the global rearrangement of chromatin. In parallel, forces promote local F-actin polymerization at the outer nuclear membrane, which limits the availability of nuclear G-actin. Subsequently, the reduction of nuclear G-actin results in attenuated global transcription and therefore increased H3K27me3 occupancy to reinforce gene silencing. Restoring nuclear actin levels in the presence of mechanical strain counteracts PRC2-mediated silencing of transcribed genes. This mechanosensory circuit is also observed in vivo. Depletion of NMIIA in mouse epidermis leads to decreased H3K27me3 levels and precocious lineage commitment, thus abrogating organ growth and patterning. Our results reveal how mechanical signals regulate nuclear architecture, chromatin organization and transcription to control cell fate decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent data indicate that levels of overweight and obesity are increasing at an alarming rate throughout the world. At a population level (and commonly to assess individual health risk), the prevalence of overweight and obesity is calculated using cut-offs of the Body Mass Index (BMI) derived from height and weight. Similarly, the BMI is also used to classify individuals and to provide a notional indication of potential health risk. It is likely that epidemiologic surveys that are reliant on BMI as a measure of adiposity will overestimate the number of individuals in the overweight (and slightly obese) categories. This tendency to misclassify individuals may be more pronounced in athletic populations or groups in which the proportion of more active individuals is higher. This differential is most pronounced in sports where it is advantageous to have a high BMI (but not necessarily high fatness). To illustrate this point we calculated the BMIs of international professional rugby players from the four teams involved in the semi-finals of the 2003 Rugby Union World Cup. According to the World Health Organisation (WHO) cut-offs for BMI, approximately 65% of the players were classified as overweight and approximately 25% as obese. These findings demonstrate that a high BMI is commonplace (and a potentially desirable attribute for sport performance) in professional rugby players. An unanswered question is what proportion of the wider population, classified as overweight (or obese) according to the BMI, is misclassified according to both fatness and health risk? It is evident that being overweight should not be an obstacle to a physically active lifestyle. Similarly, a reliance on BMI alone may misclassify a number of individuals who might otherwise have been automatically considered fat and/or unfit.