978 resultados para Photosystem II reaction center
Resumo:
Three novel mixed bridged trinuclear and one tetranuclear copper(II) complexes of tridentate NNO donor Schiff base ligands [Cu-3(L-1)(2)(mu(LI)-N-3)(2)(CH3OH)(2)(BF2)(2)] (1), [Cu-3(L-1)(2)(mu(LI)-NO3-I kappa O.2 kappa O')(2)] (2), [Cu-3(L-2)(2)(mu(LI)-N-3)(2)(mu-NOI-I kappa O 2 kappa O')(2)] (3) and [Cu-4(L-3)(2)(mu(LI)-N-3)(4)(mu-CH3COO-I kappa O 2 kappa O')(2)] (4) have been synthesized by reaction of the respective tridentate ligands (L-1 = 2[1-(2-dimethylamino-ethylimino)-ethyl]-phenol, L-2 = 2[1-(2-diethylamino-ethylimino)-ethyl]-phenol, L-3 = 2-[1-(2-dimethylamino-ethylimino)-methyl]-phenol) with the corresponding copper(II) salts in the presence of NaN3 The complexes are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements Complex 1 is composed of two terminal [Cu(L-1)(mu(LI)-N-3)] units connected by a central [Cu(BF4)(2)] unit through nitrogen atoms of end-on azido ligands and a phenoxo oxygen atom of the tridentate ligand The structures of 2 and 3 are very similar, the only difference is that the central unit is [Cu(NO1)(2)] and the nitrate group forms an additional mu-NO3-I kappa O 2 kappa O' bridge between the terminal and central copper atoms In complex 4, the central unit is a di-mu(L1)-N-3 bridged dicopper entity, [Cu-2(mu(L1)-N-3)(2)(CH3COO)(2)] that connects two terminal [Cu(L-3)(mu(L1)-N-3)] units through end-on azido; phenoxo oxygen and mu-CH3COO-1 kappa O center dot 2 kappa O' triple bridges to result in a tetranuclear unit Analyses of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the copper(II) ions in complexes 1-3, with the exchange parameter J of -9 86, -11 6 and -19 98 cm(-1) for 1-3, respectively In complex 4 theoretical calculations show the presence of an antiferromagnetic coupling in the triple bridging ligands (acetato, phenoxo and azido) while the interaction through the double end-on azido bridging ligand is strongly ferromagnetic.
Resumo:
Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)(2)center dot 6H(2)O in methanol produced a trinuclear Cu-II complex, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O center dot 0.5CH(2)Cl(2) (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary Cu-II complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central mu(3)-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal Cu-II coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = -15.4(2) cm(-1).
Resumo:
[Cu2(μO2CCH3)4(H2O)2], [CuCO3·Cu(OH)2], [CoSO4·7H2O], [Co((+)-tartrate)], and [FeSO4·7H2O] react with excess racemic (±)- 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate {(±)-PhosH} to give mononuclear CuII, CoII and FeII products. The cobalt product, [Co(CH3OH)4(H2O)2]((+)-Phos)((−)-Phos) ·2CH3OH·H2O (7), has been identified by X-ray diffraction. The high-spin, octahedral CoII atom is ligated by four equatorial methanol molecules and two axial water molecules. A (+)- and a (−)-Phos− ion are associated with each molecule of the complex but are not coordinated to the metal centre. For the other CoII, CuII and FeII samples of similar formulation to (7) it is also thought that the Phos− ions are not bonded directly to the metal. When some of the CuII and CoII samples are heated under high vacuum there is evidence that the Phos− ions are coordinated directly to the metals in the products.
Resumo:
1,1′-Diacetylferrocene reacts with neat hydrate over a period of 72 h at 20°C to give the dihydrazone [H2NN(Me)CC5H4FeC5H4C(Me)NNH2] (6) in almost quantitative yield. Either prolonging the reaction time or reacting 6 with fresh hydrazine causes the iron to be stripped from the metallocene and bis(hydrazine)bis(hydrazinecarboxylato-N′,O) iron(II), [Fe(N2H4)2(OOCNHNH2)2] (11), crystallizes. In the presence of Ba2+ or Mo2+ ions two molecules of complex 6 react to give the cyclic diazine [N(Me)CC5H4FeC5H4C (Me)N]2 (7) in high yield. Hydrazine is liberated in this reaction. Complexes 6 and 11 have been characterized crystallographically. The cyclic voltammograms of complexes 6 and 7 contain essentially non-reversible oxidation peaks.
Resumo:
The reaction of cis-[RuCl2(dmso)(4)] with [6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c] quinazoline] (L) afforded in pure form a blue ruthenium(II) complex, [Ru(L-1)(2)] (1), where the original L changed to [2-(1H-benzoimidazol-2-yl)-phenyl]-pyridin-2-ylmethylene-amine (HL1). Treatment of RuCl3 center dot 3H(2)O with L in dry tetrahydrofuran in inert atmosphere led to a green ruthenium(II) complex, trans-[RuCl2(L-2)(2)] (2), where L was oxidized in situ to the neutral species 6-pyridin-yl-benzo[4,5]imidazo[1,2-c] quinazoline (L-2). Complex 2 was also obtained from the reaction of RuCl3 center dot 3H(2)O with L-2 in dry ethanol. Complexes 1 and 2 have been characterized by physico-chemical and spectroscopic tools, and 1 has been structurally characterized by single-crystal X-ray crystallography. The electrochemical behavior of the complexes shows the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of these complexes with calf thymus DNA by using absorption and emission spectral studies allowed determination of the binding constant K-b and the linear Stern-Volmer quenching constant K-SV
Resumo:
Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO(4))(2)center dot 6H(2)O in methanol in 3:1 M ratio at room temperature yields light green [CuL(3)](ClO(4))(2)center dot H(2)O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL(3)](ClO(4))(2)center dot 0.5CH(3)CN has been determined which shows Jahn-Teller distortion in the CuN(6) core present in the cation [CuL(3)](2+). Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g(parallel to) = 2.262 (A(parallel to) = 169 x 10 (4) cm (1)) and g(perpendicular to) = 2.069. The Cu(II/I) potential in 1 in CH(2)Cl(2) at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL(3)](+) in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL(3)](+) are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 angstrom while the ideal Cu(I)-N bond length in a symmetric Cu(I)N(6) moiety is estimated as 2.25 angstrom. Reaction of L with Cu(CH(3)CN)(4)ClO(4) in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL(2)]ClO(4) (2). Its (1)H NMR spectrum indicates that the metal in [CuL(2)](+) is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH(2)Cl(2) at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From (1)H NMR titration, the free energy of binding of L to [CuL(2)](+) to produce [CuL(3)](+) in CD(2)Cl(2) at 298 K is estimated as -11.7 (+/-0.2) kJ mol (1).
Resumo:
A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh(3)), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)(2), the palladium(II) thiosaccharinate, Pd(tsac)(2) (tsac: thiosaccharinate anion) (1) was prepared. The reaction of I with PPh(3), dppm, and dppe leads to the mononuclear species Pd(tsac)(2)(PPh(3))(2)center dot MeCN (2), [Pd(tsac)(2)(dppm)] (3), Pd(tsac)(2)(dppm)(2) (4), and [Pd(tsac)(2)(dppe)]center dot MeCN (5). Compounds 2, 4, and 5 have been prepared also by the reaction of Pd(acac)(2) with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3, and 5 have been studied by X-ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P2(1)/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) angstrom, beta = 91.284(1)degrees, and Z = 8 molecules per unit cell, and complex 5 in P2(1)/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) angstrom, beta = 107.996(7)degrees, and Z = 4. In compounds 3 and 5, the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the Pd(II) atom. The molecular structure of complex 3 is the first reported for a mononuclear Pd(II)-dppm-thionate system.
Resumo:
Five new complexes of general formula: [Ni(RSO(2)N=CS(2))(dppe)], where R = C(6)H(5) (1), 4-ClC(6)H(4) (2), 4-BrC(6)H(4) (3), 4-IC(6)H(4) (4) and dppe = 1,2-bis(diphenylphosphino) ethane and [Ni(4-IC(6)H(4)SO(2)N=CS(2))(PPh(3))(2)] (5), where PPh3 = triphenylphosphine, were obtained in crystalline form by the reaction of the appropriate potassium N-R-sulfonyldithiocarbimate K(2)(RSO(2)N=CS(2)) and dppe or PPh(3) with nickel(II) chloride in ethanol/water. The elemental analyses and the IR, (1)H NMR, (13)C NMR and (31)P NMR spectra are consistent with the formation of the square planar nickel(II) complexes with mixed ligands. All complexes were also characterized by X-ray diffraction techniques and present a distorted cis-NiS(2)P(2) square-planar configuration around the Ni atom. Quantum chemical calculations reproduced the crystallographic structures and are in accord with the spectroscopic data. Rare C-H center dot center dot center dot Ni intramolecular short contact interactions were observed in the complexes 1-5. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
This work reports the synthesis and characterization of a new copper complex with nadolol, a beta-blocker aminoalcohol. The stoichiometry found was Na[Cu(nadololate)(CO(3))] center dot H(2)O. Electronic and vibrational spectroscopy analysis was performed, and the crystal structure of Na[Cu(nadololate)-(CO(3))] center dot H(2)O was determined by X-ray diffraction.
Resumo:
The synthesis, structural characterization, voltammetric experiments and antibacterial activity of [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] were studied and compared with similar previously reported copper complexes. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O crystallized in a monoclinic system, space group C2/c where the nickel ion was in a slightly distorted octahedral environment, coordinated with two sulfisoxazole molecules through the heterocyclic nitrogen and four water molecules. [Ni(sulfapyridine)(2)] crystallized in a orthorhombic crystal system, space group Pnab. The nickel ion was in a distorted octahedral environment, coordinated by two aryl amine N from two sulfonamides acting as monodentate ligands and four N atoms (two sulfonamidic N and two heterocyclic N) from two different sulfonamide molecules acting as bidentate ligands. Differential pulse voltammograms were recorded showing irreversible peaks at 1040 and 1070 mV, respectively, attributed to Ni(II)/Ni(III) process. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] presented different antibacterial behavior against Staphylococcus aureus and Escherichia coli from the similar copper complexes and they were inactive against Mycobacterium tuberculosis. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.
Resumo:
A spectroscopic study was performed showing that the [Fe(III)(L(2-))(2)](1-) (L(2-) = dopacatecholate) complex reacts with Ni(II), Co(II) and Zn(II) in an aqueous solution containing S(2)O(3)(2-) resulting in the soluble [M(L(1-))(3)](1-) (L(1-) = dopasemiquinone; M = Ni(II), Co(II) or Zn(II) complex species. The Raman and IR spectra of the [CTA][M(L(1-))(3)] complexes, CTA hexadecyltrimethylammonium cation, in the solid state were obtained. The kinetic constants for the metal substitution reactions were determined at four different temperatures, providing values for Delta W(not equal) Delta S(not equal) and Delta G(not equal). The reactions were slow (k = 10(-1)1 M s(-1)) and endothermic. The system investigated can be considered as a simplified model to explain some aspects of siderophore chemistry. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The neutral complex [HgPh(dmpymt)] 1 (dmpymtH = 4,6-dimethylpyrimidine-2(1H)-thione) reacts with HBF(4) to give the cationic complex [HgPh(dmpymtH)][BF(4)] 2. The X-ray molecular structure of the later revealed a [2+1] coordination sphere about the mercury(II) atom (C-Hg-S and Hg center dot center dot center dot N). In the dinuclear complex [(HgPh)(2)(mu-dtu)] 3 [dtuH(2) = 2,4(1H,3H)-pyrimidinedithione or dithiouracil] the coordination spheres are also [2+1] although dissimilar regarding the Hg center dot center dot center dot N secondary bonds. NMR spectroscopy ((1)H, (13)C and (199)Hg) studies were undertaken in solution and the results discussed in the light of the X-ray structures. (C) 2008 Elsevier B. V. All rights reserved.
Graduate School and University Center Archives Finding Aid - Record Group II: Centers and Institutes
Resumo:
This is part of the finding aid to the Graduate School and University Center (GSUC) Archives, City University of New York. Record Group II is material collected from research centers and institutes at the GSUC.