919 resultados para Phosphotransferases (Alcohol Group Acceptor) -- chemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcifying coccolithophores have been proposed as a potentially vulnerable group in the face of increasing surface ocean CO2 levels. A full understanding of the likely responses of this group requires better mechanistic information on pH- and CO2-sensitive processes that underlie cell function at molecular, cellular and population levels. New findings on the mechanisms of pH homeostasis at a molecular and cellular level in both diatoms and coccolithophores are shaping our understanding of how these important groups may respond or acclimate to changing ocean pH. Critical parameters including intracellular pH homeostasis and cell surface pH will be considered. These studies are being carried out in parallel with genetic studies of natural oceanic populations to assess the natural genetic and physiological diversity that will underlie adaptation of populations in the long term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of self-lubricating silicone elastomeric biomaterials, prepared using the novel crosslinking agent tetra( oleyloxy) silane and having very low coefficients of friction, has recently been reported. In this study, the in vitro release characteristics of lubricious oleyl alcohol produced during the silicone curing reaction have been quantitatively evaluated for a range of tetra( propoxy) silane/tetra(oleyloxy) silane crosslinker compositions using a novel evaporative light scattering detection method in combination with high performance liquid chromatography. The mechanism of oleyl alcohol release was seen to deviate from a simple, matrix-controlled diffusion process and instead obeyed an anomalous transport mechanism. An explanation for the observed release behaviour has been proposed based on competitive reaction kinetics between the tetra( oleyloxy) silane and tetra( propoxy) silane substituents of the silicone crosslinking agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the effect of mass transfer limitations in the three-phase oxidation of cinnamyl alcohol carried out in toluene and an ionic liquid (1-butyl-3-methyl-imidazolium bis(trifluoromethylsulphonyl)imide), studies have been performed in a rotating disc reactor and compared with those carried out in a stirred tank reactor where mass transfer effects are considered negligible. High catalyst efficiencies are found in the stirred tank reactor with the use of both ionic liquid and toluene, although there is a decrease in rate for the ionic liquid reactions. In contrast, internal pore diffusion limits the reaction in both solvents in the rotating disc reactor. This mass transfer resistance reduces the problem of overoxidation of the metal surface when the reaction is carried out in toluene, leading to significantly higher rates of reaction than expected, although at the cost of decreased selectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of 2-, 3- and 4-substituted pyridines was metabolised using the mutant soil bacterium Pseudomonas putida UV4 which contains a toluene dioxygenase (TDO) enzyme. The regioselectivity of the biotransformation in each case was determined by the position of the substituent. 4-Alkylpyridines were hydroxylated exclusively on the ring to give the corresponding 4-substituted 3-hydroxypyridines, while 3-alkylpyridines were hydroxylated stereoselectively on C-1 of the alkyl group with no evidence of ring hydroxylation. 2-Alkylpyridines gave both ring and side-chain hydroxylation products. Choro- and bromo-substituted pyridines, and pyridine itself, while being poor substrates for P. putida UV4, were converted to some extent to the corresponding 3-hydroxypyridines. These unoptimised biotransformations are rare examples of the direct enzyme-catalysed oxidation of pyridine rings and provide a novel synthetic method for the preparation of substituted pyridinols. Evidence for the involvement of the same TDO enzyme in both ring and side-chain hydroxylation pathways was obtained using a recombinant strain of Escherichia coli (pKST11) containing a cloned gene for TDO. The observed stereoselectivity of the side-chain hydroxylation process in P. putida UV4 was complicated by the action of an alcohol dehydrogenase enzyme in the organism which slowly leads to epimerisation of the initial (R)-alcohol bioproducts by dehydrogenation to the corresponding ketones followed by stereoselective reduction to the (S)-alcohols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To give the first demonstration of neighboring group-controlled drug delivery rates, a series of novel, polymerizable ester drug conjugates was synthesized and fully characterized. The monomers are suitable for copolymerization in biomaterials where control of drug release rate is critical to prophylaxis or obviation of infection. The incorporation of neighboring group moieties differing in nucleophilicity, geometry, and steric bulk in the conjugates allowed the rate of ester hydrolysis, and hence drug liberation, to be rationally and widely controlled. Solutions (2.5 x 10-5 mol dm-3) of ester conjugates of nalidixic acid incorporating pyridyl, amino, and phenyl neighboring groups hydrolyzed according to first-order kinetics, with rate constants between 3.00 ( 0.12 10-5 s -1 (fastest) and 4.50 ( 0.31 10- 6 s-1 (slowest). The hydrolysis was characterized using UV-visible spectroscopy. When copolymerized with poly(methyl methacrylate), free drug was shown to elute from the resulting materials, with the rate of release being controlled by the nature of the conjugate, as in solution. The controlled molecular architecture demonstrated by this system offers an attractive class of drug conjugate for the delivery of drugs from polymeric biomaterials such as bone cements in terms of both sustained, prolonged drug release and minimization of mechanical compromise as a result of release. We consider these results to be the rationale for the development of 'designer' drug release biomaterials, where the rate of required release can be controlled by predetermined molecular architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased plasma homocysteine is an independent risk factor for cardiovascular disease. We have investigated homocysteine and B-group vitamin levels in renal transplant patients. Fasting blood was collected from 55 renal transplant recipients with good renal function and 32 age/sex matched control subjects. Total homocysteine was increased in transplant recipients in comparison to controls (10.9+/-1.5 vs. 6.7+/-1.3 micromol/l, P < 0.001). There was no difference in homocysteine between patients receiving cyclosporin (n = 39, homocysteine 11.0+/-1.5 micromol/l) and patients receiving prednisolone + azathioprine (n = 16, 10.8+/-1.6 micromol/l, mean+/-S.D.), although there was a significant correlation between homocysteine and serum cyclosporin concentration in the sub-group of patients receiving that immunosuppressive regimen (r = 0.42, P < 0.05). Levels of B-group vitamins were similar in patients and controls. Plasma homocysteine is increased in renal transplant recipients even in the presence of minor degrees of renal impairment and normal levels of B-group vitamins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extension of the Ye and Shreeve group contribution method [C. Ye, J.M. Shreeve, J. Phys. Chem. A 111 (2007) 1456–1461] for the estimation of densities of ionic liquids (ILs) is here proposed. The new version here presented allows the estimation of densities of ionic liquids in wide ranges of temperature and pressure using the previously proposed parameter table. Coefficients of new density correlation proposed were estimated using experimental densities of nine imidazolium-based ionic liquids. The new density correlation was tested against experimental densities available in literature for ionic liquids based on imidazolium, pyridinium, pyrrolidinium and phosphonium cations. Predicted densities are in good agreement with experimental literature data in a wide range of temperatures (273.15–393.15 K) and pressures (0.10–100 MPa). For imidazolium-based ILs, the mean percent deviation (MPD) is 0.45% and 1.49% for phosphonium-based ILs. A low MPD ranging from 0.41% to 1.57% was also observed for pyridinium and pyrrolidinium-based ILs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on experimental viscosity data collected from the literature and using density data obtained from a predictive method previously proposed by the authors, a group contribution method is proposed to estimate viscosity of imidazolium-, pyridinium-, and pyrrolidinium-based ILs containing hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethanesulfonyl) amide (Tf2N), chloride (Cl), acetate (CH3COO), methyl sulfate (MeSO4), ethyl sulfate (EtSO4), and trifluoromethanesulfonate (CF3SO3) anions, covering wide ranges of temperature, 293–393 K and viscosity, 4–21,000 cP. It is shown that a good agreement with literature data is obtained. For circa 500 data points of 29 ILs studied, a mean percent deviation (MPD) of 7.7% with a maximum deviation smaller than 28% was observed. 71.1% of the estimated viscosities present deviations smaller than 10% of the experimental values while only 6.4% have deviations larger than 20%. The group contribution method here developed can thus be used to evaluate the viscosity of new ionic liquids in wide ranges of temperatures at atmospheric pressure and, as data for new groups of cations and anions became available, can be extended to a larger range of ionic liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Factors that control the competition between toluene dioxgenase-catalysed arene cis-dihydroxylation and dehydrogenase-catalysed ketone reduction have been studied, using whole cells of Pseudomonas putida UV and three alkylaryl ketones. The triol metabolite, obtained from 2,2,2-trifluoroacetophenone, has been used in the synthesis of single enantiomer chiral phenols and benzylic alcohols. Potential applications of the methylether derivatives of the chiral phenols and benzylic alcohols, as resolving agents, have been found. (c) 2007 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical reduction of oxygen is reported in four room temperature ionic liquids (RTILs) based on quaternary alkyl -onium cations and heavily fluorinated anions in which the central atom is either nitrogen or phosphorus. Data were collected using cyclic voltammetry and potential step chronoamperometry at gold, platinum, and glassy carbon disk electrodes of micrometer dimension under water-free conditions at a controlled temperature. Analysis via fitting, to appropriate theoretical equations was then carried out to obtain kinetic and thermodynamic information pertaining to the electrochemical processes observed. In the quaternary ammonium electrolytes, reduction of oxygen was found to occur reversibly to give stable superoxide, in an analogous manner to that seen in conventional aprotic solvents such as dimethyl sufoxide and acetonitrile. The most significant difference is in the relative rate of diffusion; the diffusion coefficients of oxygen in the RTILs are an order of magnitude lower than in common organic solvents, and for superoxide these values are reduced by a further factor of 10. In the quaternary phosphonium ionic liquids, however, more complex voltammetry is observed, akin to that expected for the reduction of oxygen in acidified organic media. This is shown to be consistent with the occurrence of a proton abstraction reaction between the electrogenerated superoxide and quaternary alkyl phosphonium cations following the initial electron transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The liquid phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol has been carried out over a graphite-supported iridium catalyst. The effect of reaction parameters such as temperature, pressure, concentration of reactant, the effect of addition of product to the feed and pre-reduction of the catalyst were studied. In situ pre-reduction of the catalyst with hydrogen had a very significant enhancing effect on the conversion of cinnamaldehyde and selectivity of the catalyst to cinnamyl alcohol. Kinetic analysis of the pre-reduced catalyst showed that the reaction is zero order with respect to cinnamaldehyde and first order with respect to hydrogen. The reaction follows an Arrhenius behaviour with an activation energy of 37 kJ mol(-1). Detailed analysis of the reaction showed that hydrogenation of the C=C double bond to give hydrocinnamaldehyde predominantly occurred at low conversions of cinnamaldehyde (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of twelve benzoate esters was metabolised, by species of the Phellinus genus of wood-rotting fungi, to yield the corresponding benzyl alcohol derivatives and eight salicylates. The isolation of a stable oxepine metabolite, from methyl benzoate, allied to evidence of the migration and retention of a carbomethoxy group ( the NIH Shift), during enzyme-catalysed ortho-hydroxylation of alkyl benzoates to form salicylates, is consistent with a mechanism involving an initial arene epoxidation step. This mechanism was confirmed by the isolation of a remarkably stable, optically active, substituted benzene oxide metabolite of methyl 2-( trifluoromethyl) benzoate, which slowly converted into the racemic form. The arene oxide was found to undergo a cycloaddition reaction with 4-phenyl-1,2,4-triazoline-3,5-dione to yield a crystalline cycloadduct whose structure and racemic nature was established by X-ray crystallography. The metabolite was also found to undergo some novel benzene oxide reactions, including epoxidation to give an anti-diepoxide, base-catalysed hydrolysis to form a trans-dihydrodiol and acid-catalysed aromatisation to yield a salicylate derivative via the NIH Shift of a carbomethoxy group.