964 resultados para Peritoneal macrophages
Resumo:
Tumor-associated macrophages (TAMs) invade the tumor stroma in many cancers, yet their role is incompletely understood. To visualize and better understand these critical cells in tumor progression, we screened a portfolio of rationally selected, injectable agents to image endogenous TAMs ubiquitously in three different cancer models (colon carcinoma, lung adenocarcinoma, and soft tissue sarcoma). AMTA680, a functionally derivatized magneto-fluorescent nanoparticle, labeled a subset of myeloid cells with an "M2" macrophage phenotype, whereas other neighboring cells, including tumor cells and a variety of other leukocytes, remained unlabeled. We further show that AMTA680-labeled endogenous TAMs are not altered and can be tracked noninvasively at different resolutions and using various imaging modalities, e.g., fluorescence molecular tomography, magnetic resonance imaging, and multiphoton and confocal intravital microscopy. Quantitative assessment of TAM distribution and activity in vivo identified that these cells cluster in delimited foci within tumors, show relatively low motility, and extend cytoplasmic protrusions for prolonged physical interactions with neighboring tumor cells. Noninvasive imaging can also be used to monitor TAM-depleting regimen quantitatively. Thus, AMTA680 or related cell-targeting agents represent appropriate injectable vehicles for in vivo analysis of the tumor microenvironment.
Resumo:
Rationale: Experimental autoimmune myocarditis (EAM) mirrors important pathogenic aspects of inflammatory cardiomyopathy, a common cause of heart failure. In EAM, TGF-β-dependent conversion of heart-infiltrating prominin-1+ progenitors into myofibroblasts is critical for development of fibrosis and the end-stage heart failure phenotype. Therapeutic strategies modulating the in vivo fate of prominin-1+ progenitors might therefore prevent TGF-β-mediated cardiac fibrosis and pathological remodelling. Methods and Results: EAM was induced in BALB/c mice using alpha-myosin heavy chain (aMyHC) peptide/complete Freund's adjuvant (CFA) immunization. Prominin-1+ cells were isolated from the inflamed hearts at day 21 after immunization, expanded and treated with Macrophage Colony-Stimulating Factor (M-CSF) or Transforming Growth Factor-beta (TGF-β). Herein, we demonstrated that M-CSF turns, ex vivo and in the EAM, heart-infiltrating prominin-1+ progenitors into immunosuppressive F4/80/CD11b/CD16/32/NOS2-expressing, nitric oxide producing and E.coli bacteria phygocyting macrophages, and protect further TGF-β-stimulated differentiation into pathogenic myofibroblasts. Systemic M-CSF treatment during myocarditis completely prevented post-inflammatory fibrosis, T cell relapse and left ventricular dysfunction. Mechanistically, M-CSF-induced macrophage differentiation from prominin-1+ progenitors critically required nitric oxide synthase 2. Accordingly, M-CSF treatment failed to reduce myocardial fibrosis development in Nos2-/- mice. Conclusions: Altering the in vivo fate of inflammatory prominin-1 expressing progenitors from pro-fibrotic into the F4/80 expressing macrophage phenotype protects from myocarditis progression, cardiac fibrosis, and heart failure. These findings offer a modern therapeutic model and challenge former concepts, which attributed macrophages a detrimental role in inflammatory cardiomyopathy progression.
Resumo:
There are several experimental models describing in vivo eosinophil (EO) migration, including ip injection of a large volume of saline (SAL) or Sephadex beads (SEP). The aim of this study was to investigate the mechanisms involved in the EO migration in these two models. Two consecutive injections of SAL given 48 hr apart, induced a selective recruitment of EO into peritoneal cavity of rats, which peaked 48 hr after the last injection. SEP, when injected ip, promoted EO accumulation in rats. The phenomenom was dose-related and peaked 48 hr after SEP injection. To investigate the mediators involved in this process we showed that BW A4C, MK 886 and dexamethasone (DXA) inhibited the EO migration induced by SAL and SEP. To investigate the source of the EO chemotactic factor we showed that mast cells, macrophages (MO), but not lymphocytes, incubated in vitro in presence of SAL released a factor which induced EO migration. With SEP, only mast cells release a factor that induced EO migration, which was inhibited by BW A4C, MK 886 and DXA. Furthermore, the chemotactic activity of SAL-stimulated mast cells was inhibited by antisera against IL-5 and IL-8 (interleukin). SAL-stimulated MO were only inhibited by anti-IL-8 antibodies as well SEP-stimulated mast cells. These results suggest that the EO migration induced by SAL may be dependent on resident mast cells and MO and mediated by LTB4, IL-5 and IL-8. SEP-induced EO migration was dependent on mast cells and may be mediated by LTB4 and IL-8. Furthermore, IL-5 and IL-8 induced EO migration, which was also dependent on resident cells and mediated by LTB4 . In conclusion, EO migration induced by SAL is dependent on mast cells and MO, whereas that induced by SEP is dependent on mast cells alone. Stimulated mast cells release LTB4, IL-5 and IL-8 while MO release LTB4 and IL-8. The IL-5 and IL-8 release by the SAL or SEP-stimulated resident cells may act in an autocrine fashion, thus potentiating LTB4 release.
Resumo:
There are several experimental evidences that nitric oxide (NO) is involved in the microbicidal activity of macrophages against a number of intracellular pathogens including Leishmania major, Trypanozoma cruzi, Toxoplasma gondii. It is also well known that eosinophils (EO) have microbicidal activity against many parasites such as Schistosoma mansoni, Trichinella spiralis, T. cruzi and L. amazonensis. The purpose of this study was to investigate if NO is involved in the microbicidal activity of EO against L. major. Eosinophils harvested from peritoneal cavity of rats released spontaneously after 24 and 48 hr a small amount of nitrite. This release was enhanced by the treatment of cells with IFN-gamma (200 IU/ml). This release was blocked by addition of the NO synthase inhibitor, L-NIO (100 mu M) into the culture. To determinate the leishmanicidal activity of eosinophils the parasites were incubated with activated eosinophils with IFN-gamma and the ability of surviving parasites to incorporate [³H]thymidine was evaluated. IFN-gamma-activated eosinophils were able to kill L. major and to release high levels of nitrite. The ability to destroy L. major and the release of NO were completely blocked by L-NIO. These results indicate that activated eosinophils release NO which is involved in the microbicidal activity of these cells against L. major.
Resumo:
In my first project, I analyzed the role of the amiloride-sensitive epithelial sodium channel ENaC) in the skin during wound healing. ENaC is present in the skin and a function in keratinocyte differentiation and barrier formation has been demonstrated. Previous findings suggested, that ENaC might be implicated in keratinocyte migration, although its role in wound healing was not analyzed yet. Using skin-specific (K14-Cre) conditional ENaC knockout and overexpressing mice, I determined the wound closure kinetic and performed morphometric measurements. The time course of wound repair was not significantly different in knockouts or transgenics when compared to control mice and the morphology of the closing wound was not altered. In my second project, I studied the glucocorticoid-induced leucine zipper (GILZ, Tsc22d3). GILZ is widely expressed and an important role has been predicted in immunity, adipogenesis and renal sodium handling. Mice were generated that constitutively lack all the functional domains of the Gilz gene. In these mice, the expression of GILZ mRNA transcripts and protein were completely abolished in all tissues tested. Surprisingly, knockout mice survived. To test whether GILZ mimicks glucocorticoid action, we studied its implication in T- and B- cell development and in a model of sepsis. We measured cytokine secretion in different inflammatory models, like in peritoneal and bone marrow-derived macrophages, in splenocytes and a model of sepsis. In all our experiments, cytokine secretion from GILZ- deficient cells was not different from controls. From 6 months onwards, knockout mice contained significantly less body fat and were lighter. Following sodium and water deprivation experiments, water and salt homeostasis was preserved. Sterility of knockout males was associated with a severe testis dysplasia, smaller seminiferous tubules, the number of Sertoli and germ cell was reduced while increased apoptosis, but not cell proliferation, was evidenced. The interstitial Leydig cell population was augmented, and higher plasma FSH and testosterone levels were found. Interestingly, the expression of the target gene Ppar2 was diminished in the testis and in the liver, but not in the skin, kidney or fat. Tsc22d1 mRNA transcript level was found to be upregulated in testis, but not in the kidney or fat tissue. In most tissue, excepted the testis, GILZ-deficient mice reveal functional redundancy amongst members of the Tsc22d family or genes involved in the same regulatory pathways. In summary, contrarily to the published in vitro data, GILZ does not play a crucial role attributed in immunology or inflammation, but we identified a novel function in spermatogenesis. -- Dans mon premier projet, j'ai analysé le rôle du canal épithélial sodique sensible à l'amiloride (ENaC) dans la cicatrisation de la peau. ENaC est présent dans la peau et il a une fonction dans la différenciation des kératinocytes et dans la formation de la barrière. Des études suggèrent qu'ENaC pourrait être impliqué dans la migration des kératinocytes, cependant, son rôle dans la cicatrisation n'a pas encore été étudié. A l'aide de souris qui surexpriment ou qui sont knockout pour ENaC, spécifiquement dans la peau (K14-Cre), j'ai analysé le temps de clôture de la cicatrice et j'ai aussi étudié la morphologie de la plaie guérissant. Chez les souris qui surexpriment ou chez les knockouts, la vitesse de fermeture et la morphologie de la cicatrice étaient identiques aux souris contrôles. Dans mon second projet, j'ai étudié le glucocorticoid-induced leucine zipper (GILZ, Tsc22d3). GILZ est largement exprimé et un rôle important a été prédit dans l'immunité, l'adipogénèse et le transport sodique rénal. Des souris ont été générées dont les domaines fonctionnels du gène Gilz sont éliminés. L'expression de GILZ en ARNm et protéine a été complètement abolie dans tous les tissus testés. Étonnamment, ces souris knockout survivent. Afin de tester si GILZ imite les effets des glucocorticoïdes, nous avons étudié son implication dans le développement des cellules T et B ainsi qu'un modèle de septicémie. Nous avons mesuré la sécrétion de cytokines à partir de différents modèles d'inflammation tels que des macrophages péritonéaux ou de moelle, de splénocytes ou encore d'un modèle de septicémie. Dans toutes nos expériences, la sécrétion de cytokines de cellules GILZ-déficientes était semblable. Dès 6 mois, les knockouts contenaient significativement moins de graisses et étaient plus légères. Suite à une privation sodique et aqueuse, l'homéostasie du sel et de l'eau était préservée. Les mâles knockouts présentaient une stérilité accompagnée d'une dysplasie testiculaire sévère, de tubules séminifères étaient plus petits et contenaient un nombre réduit de cellules de Sertoli et de cellules germinales. L'apoptose était augmentée dans ces cellules mais pas la prolifération cellulaire. Le nombre de cellules de Leydig était aussi plus élevé, ainsi que la FSH et la testostérone. L'expression du gène cible Pparγ2 était diminuée dans le testicule et le foie, mais pas dans la peau, le rein ou le tissu adipeux. L'ARNm de Tsc22d1 était plus exprimé dans le testicule, mais pas dans le rein ou le tissu adipeux. Dans la plupart des tissus, sauf le testicule, les souris knockouts révélaient une redondance fonctionnelle des autres membres de la famille Tsc22d ou de gènes impliqués dans les mêmes voies de régulation. En résumé, contrairement aux données in vitro, GILZ ne joue pas un rôle essentiel en immunologie, mais nous avons identifié une nouvelle fonction dans la spermatogénèse.
Resumo:
Aeromonas hydrophila is a Gram-negative pathogen that causes serious infectious disease in humans. A. hydrophila induces apoptosis in infected macrophages, but the host proinflammatory responses triggered by macrophage death are largely unknown. Here, we demonstrate that the infection of mouse macrophages with A. hydrophila triggers the activation of caspase-1 and release of IL-1β. Caspase-1 activation was abrogated in macrophages deficient in Nod-like receptor family, pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), but not NLR family, CARD domain containing 4 (NLRC4). The activation of the NLRP3 inflammasome was mediated by three cytotoxins (aerolysin, hemolysin and multifunctional repeat-in-toxin) produced by A. hydrophila. Our results indicated that the NLRP3 inflammasome senses A. hydrophila infection through the action of bacterial cytotoxins.
Resumo:
Introducció: Un cultiu positiu de líquid peritoneal per a Càndida spp amb clínica associada, és diagnòstic de Candidiasis Peritoneal (CP). Objetius: L’objectiu primari és coneixer la prevalença de CP. Com objectius secundaris coneixer els possibles factors de risc. Tipus d’estudi: Prospectiu, observacional. Mètodes: S’agafa una mostra de 74 pacients amb diagnòstic de peritonitis (2007-2010). Durant la cirugía s’aspira líquid peritoneal lliure i és conrea. Resultats i conclusions: La prevalença va ser del 17.6% (46.15% C. albicans). L’ afectació del tracte gastro-intestinal-superior (OR 6.554) i l’aparició de fallada cardio-vascular durant la cirugia (OR 5.827), són factors de risc per a desenvolupar-la. És estudi preliminar.
Resumo:
Alguns pacients que realitzen diàlisi peritoneal (DP) presenten sobrecàrrega de volum sense fallada d’ultrafiltració (UF) i precisen per controlar-ho augmentar la concentració d’agents osmòtics dels recanvis peritoneals. L’objectiu de l’estudi és conèixer les característiques clíniques i relacionar la UF amb la càrrega de glucosa administrada. Estudi observacional transversal de 31 pacient en DP. S’han enregistrat dades clíniques, analítiques, solucions administrades, osmolaritat i ultrafiltració de cada recanvi. Concloem que els pacients amb ultrafiltració insuficient tenen menor diüresi, menor funció renal residual i pitjor estat nutricional. No hem trobat diferències en els índex que relacionen ultrafiltració amb càrrega osmolar en aquest pacients.
Resumo:
OBJECTIVE: To compare the expression of the prostaglandin (PG) E(2) transporter multidrug resistance-associated protein 4 (MRP4) in eutopic and ectopic endometrial tissue from endometriosis patients with that of control subjects and to examine whether MRP4 is regulated by the antiinflammatory lipid lipoxin A(4) (LXA(4)) in endometriotic epithelial cells. DESIGN: Molecular analysis in human samples and a cell line. SETTING: Two university hospitals and a private clinic. PATIENT(S): A total of 59 endometriosis patients and 32 age- and body mass index-matched control subjects undergoing laparoscopy or hysterectomy. INTERVENTION(S): Normal, eutopic, and ectopic endometrial biopsies as well as peritoneal fluid were obtained during surgery performed during the proliferative phase of the menstrual cycle. 12Z endometriotic epithelial cells were used for in vitro mechanistic studies. MAIN OUTCOME MEASURE(S): Tissue MRP4 mRNA levels were quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and localization was analyzed with the use of immunohistochemistry. Cellular MRP4 mRNA and protein were quantified by qRT-PCR and Western blot, respectively. PGE(2) was measured in peritoneal fluid and cell supernatants using an enzyme immunoassay (EIA). RESULT(S): MRP4 was expressed in eutopic and ectopic endometrium, where it was overexpressed in peritoneal lesions and localized in the cytoplasm of glandular epithelial cells. LXA(4) attenuated MRP4 mRNA and protein levels in endometriotic epithelial cells in a dose-dependent manner, while not affecting the expression of enzymes involved in PGE(2) metabolism. Investigations employing receptor antagonists and small interfering RNA revealed that this occurred through estrogen receptor α. Accordingly, LXA(4) treatment inhibited extracellular PGE(2) release. CONCLUSION(S): We report for the first time that MRP4 is expressed in human endometrium, elevated in peritoneal endometriosis, and modulated by LXA(4) in endometriotic epithelial cells.
Resumo:
Mycobacterium tuberculosis-specific cytolytic activity is mediated mostly by CD4+CTL in humans. CD4+CTL kill infected target cells by inducing Fas (APO-1/CD95)-mediated apoptosis. We have examined the effect of Fas ligand (FasL)-induced apoptosis of human macrophages infected in vitro with M. tuberculosis on the viability of the intracellular bacilli. Human macrophages expressed Fas and underwent apoptosis after incubation with soluble recombinant FasL. In macrophages infected either with an attenuated (H37Ra) or with a virulent (H37Rv) strain of M. tuberculosis, the apoptotic death of macrophages was associated with a substantial reduction in bacillary viability. TNF-induced apoptosis of infected macrophages was coupled with a similar reduction in mycobacterial viability, while the induction of nonapoptotic complement-induced cell death had no effect on bacterial viable counts. Infected macrophages also showed a reduced susceptibility to FasL-induced apoptosis correlating with a reduced level of Fas expression. These data suggest that apoptosis of infected macrophages induced through receptors of the TNF family could be an immune effector mechanism not only depriving mycobacteria from their growth environment but also reducing viable bacterial counts by an unknown mechanism. On the other hand, interference by M. tuberculosis with the FasL system might represent an escape mechanism of the bacteria attempting to evade the effect of apoptosis.
Resumo:
Tumor-infiltrating macrophages typically promote angiogenesis while suppressing antitumoral T cell responses. In this issue of Cancer Cell, Klug and colleagues report that clinically-feasible, low-dose irradiation redirects macrophage differentiation from a tumor-promoting/immunosuppressive state to one that enables cytotoxic T cells to infiltrate tumors and kill cancer cells, rendering immunotherapy successful in mice.
Resumo:
The yield as well as phenotypic and functional parameters of canine peripheral blood monocyte-derived macrophages were analyzed. The cells that remained adherent to Teflon after 10 days of culture had high phagocytic activity when inoculated with Leishmania chagasi. Flow cytometric analysis demonstrated that more than 80% of cultured cells were positive for the monocyte/macrophage marker CD14.
Resumo:
Infections of the catheter wound in peritoneal dialysis are the most frequent cause of morbility in patients who undergo this technique. There are a number of procedures for the care of the wound and it is not easy to define a single method that will guarantee good condition of the wound. In order to evaluate the behaviour of the wound related to the procedure used in their care, we studied 306 patients over 24 months, compiling socio-demographic and clinical variables. We found a high incidence of infections caused by gram-positive skin and mucous germs, with a strong correlation with the fact that the patient/family carer is a nasal carrier of staphylococcus aureus and that they appear more frequently in patients who do not remove the wound dressing in the shower. We also detected an increase in pseudomonas infections when the patient does not dry the wound with a hair-dryer