917 resultados para Pattern-recognition Methods


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Diagnostic decision-making is made through a combination of Systems 1 (intuition or pattern-recognition) and Systems 2 (analytic) thinking. The purpose of this study was to use the Cognitive Reflection Test (CRT) to evaluate and compare the level of Systems 1 and 2 thinking among medical students in pre-clinical and clinical programs. Methods: The CRT is a three-question test designed to measure the ability of respondents to activate metacognitive processes and switch to System 2 (analytic) thinking where System 1 (intuitive) thinking would lead them astray. Each CRT question has a correct analytical (System 2) answer and an incorrect intuitive (System 1) answer. A group of medical students in Years 2 & 3 (pre-clinical) and Years 4 (in clinical practice) of a 5-year medical degree were studied. Results: Ten percent (13/128) of students had the intuitive answers to the three questions (suggesting they generally relied on System 1 thinking) while almost half (44%) answered all three correctly (indicating full analytical, System 2 thinking). Only 3-13% had incorrect answers (i.e. that were neither the analytical nor the intuitive responses). Non-native English speaking students (n = 11) had a lower mean number of correct answers compared to native English speakers (n = 117: 1.0 s 2.12 respectfully: p < 0.01). As students progressed through questions 1 to 3, the percentage of correct System 2 answers increased and the percentage of intuitive answers decreased in both the pre-clinical and clinical students. Conclusions: Up to half of the medical students demonstrated full or partial reliance on System 1 (intuitive) thinking in response to these analytical questions. While their CRT performance has no claims to make as to their future expertise as clinicians, the test may be used in helping students to understand the importance of awareness and regulation of their thinking processes in clinical practice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La machine à vecteurs de support à une classe est un algorithme non-supervisé qui est capable d’apprendre une fonction de décision à partir de données d’une seule classe pour la détection d’anomalie. Avec les données d’entraînement d’une seule classe, elle peut identifier si une nouvelle donnée est similaire à l’ensemble d’entraînement. Dans ce mémoire, nous nous intéressons à la reconnaissance de forme de dynamique de frappe par la machine à vecteurs de support à une classe, pour l’authentification d’étudiants dans un système d’évaluation sommative à distance à l’Université Laval. Comme chaque étudiant à l’Université Laval possède un identifiant court, unique qu’il utilise pour tout accès sécurisé aux ressources informatiques, nous avons choisi cette chaîne de caractères comme support à la saisie de dynamique de frappe d’utilisateur pour construire notre propre base de données. Après avoir entraîné un modèle pour chaque étudiant avec ses données de dynamique de frappe, on veut pouvoir l’identifier et éventuellement détecter des imposteurs. Trois méthodes pour la classification ont été testées et discutées. Ainsi, nous avons pu constater les faiblesses de chaque méthode dans ce système. L’évaluation des taux de reconnaissance a permis de mettre en évidence leur dépendance au nombre de signatures ainsi qu’au nombre de caractères utilisés pour construire les signatures. Enfin, nous avons montré qu’il existe des corrélations entre le taux de reconnaissance et la dispersion dans les distributions des caractéristiques des signatures de dynamique de frappe.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introducción: La rápida detección e identificación bacteriana es fundamental para el manejo de los pacientes críticos que presentan una patología infecciosa, esto requiere de métodos rápidos para el inicio de un correcto tratamiento. En Colombia se usan pruebas microbiología convencional. No hay estudios de espectrofotometría de masas en análisis de muestras de pacientes críticos en Colombia. Objetivo general: Describir la experiencia del análisis microbiológico mediante la tecnología MALDI-TOF MS en muestras tomadas en la Fundación Santa Fe de Bogotá. Materiales y Métodos: Entre junio y julio de 2013, se analizaron 147 aislamientos bacterianos de muestras clínicas, las cuales fueron procesadas previamente por medio del sistema VITEK II. Los aislamientos correspondieron a 88 hemocultivos (60%), 28 urocultivos (19%), y otros cultivos 31 (21%). Resultados: Se obtuvieron 147 aislamientos con identificación adecuada a nivel de género y/o especie así: en el 88.4% (130 muestras) a nivel de género y especie, con una concordancia del 100% comparado con el sistema VITEK II. El porcentaje de identificación fue de 66% en el grupo de bacilos gram negativos no fermentadores, 96% en enterobacterias, 100% en gérmenes fastidiosos, 92% en cocos gram positivos, 100% bacilos gram negativos móviles y 100% en levaduras. No se encontró ninguna concordancia en bacilos gram positivos y gérmenes del genero Aggregatibacter. Conclusiones: El MALDI-TOF es una prueba rápida para la identificación microbiológica de género y especie que concuerda con los resultados obtenidos de manera convencional. Faltan estudios para hacer del MALDI-TOF MS la prueba oro en identificación de gérmenes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Universidade Estadual de Campinas. Faculdade de Educação Física

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The peritoneal cavity (PerC) is a singular compartment where many cell populations reside and interact. Despite the widely adopted experimental approach of intraperitoneal (i.p.) inoculation, little is known about the behavior of the different cell populations within the PerC. To evaluate the dynamics of peritoneal macrophage (Mempty set) subsets, namely small peritoneal Mempty set (SPM) and large peritoneal Mempty set (LPM), in response to infectious stimuli, C57BL/6 mice were injected i.p. with zymosan or Trypanosoma cruzi. These conditions resulted in the marked modification of the PerC myelo-monocytic compartment characterized by the disappearance of LPM and the accumulation of SPM and monocytes. In parallel, adherent cells isolated from stimulated PerC displayed reduced staining for beta-galactosidase, a biomarker for senescence. Further, the adherent cells showed increased nitric oxide (NO) and higher frequency of IL-12-producing cells in response to subsequent LPS and IFN-gamma stimulation. Among myelo-monocytic cells, SPM rather than LPM or monocytes, appear to be the central effectors of the activated PerC; they display higher phagocytic activity and are the main source of IL-12. Thus, our data provide a first demonstration of the consequences of the dynamics between peritoneal Mempty set subpopulations by showing that substitution of LPM by a robust SPM and monocytes in response to infectious stimuli greatly improves PerC effector activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activation of NF-kappa B and 5-lipoxygenase-mediated (5-LO-mediated) biosynthesis of the lipid mediator leukotriene B(4) (LTB(4)) are pivotal components of host defense and inflammatory responses. However, the role of LTB(4) in mediating innate immune responses elicited by specific TLR ligands and cytokines is unknown. Here we have shown that responses dependent on MyD88 (an adaptor protein that mediates signaling through all of the known TLRs, except TLR3, as well as IL-1 beta and IL-18) are reduced in mice lacking either 5-LO or the LTB(4) receptor BTL1, and that macrophages from these mice are impaired in MyD88-dependent activation of NF-kappa B. This macrophage defect was associated with lower basal and inducible expression of MyD88 and reflected impaired activation of STAT1 and overexpression of the STAT1 inhibitor SOCS1. Expression of MyD88 and responsiveness to the TLR4 ligand LPS were decreased by Stat1 siRNA silencing in WT macrophages and restored by Socs1 siRNA in 5-LO-deficient macrophages. These results uncover a pivotal role in macrophages for the GPCR BLT1 in regulating activation of NF-kappa B through Stat1-dependent expression of MyD88.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A rapid method for classification of mineral waters is proposed. The discrimination power was evaluated by a novel combination of chemometric data analysis and qualitative multi-elemental fingerprints of mineral water samples acquired from different regions of the Brazilian territory. The classification of mineral waters was assessed using only the wavelength emission intensities obtained by inductively coupled plasma optical emission spectrometry (ICP OES), monitoring different lines of Al, B, Ba, Ca, Cl, Cu, Co, Cr, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sr, Ti, V, and Zn, and Be, Dy, Gd, In, La, Sc and Y as internal standards. Data acquisition was done under robust (RC) and non-robust (NRC) conditions. Also, the combination of signal intensities of two or more emission lines for each element were evaluated instead of the individual lines. The performance of two classification-k-nearest neighbor (kNN) and soft independent modeling of class analogy (SIMCA)-and preprocessing algorithms, autoscaling and Pareto scaling, were evaluated for the ability to differentiate between the various samples in each approach tested (combination of robust or non-robust conditions with use of individual lines or sum of the intensities of emission lines). It was shown that qualitative ICP OES fingerprinting in combination with multivariate analysis is a promising analytical tool that has potential to become a recognized procedure for rapid authenticity and adulteration testing of mineral water samples or other material whose physicochemical properties (or origin) are directly related to mineral content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised-and supervised-learning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider brightness/contrast-invariant and rotation-discriminating template matching that searches an image to analyze A for a query image Q We propose to use the complex coefficients of the discrete Fourier transform of the radial projections to compute new rotation-invariant local features. These coefficients can be efficiently obtained via FFT. We classify templates in ""stable"" and ""unstable"" ones and argue that any local feature-based template matching may fail to find unstable templates. We extract several stable sub-templates of Q and find them in A by comparing the features. The matchings of the sub-templates are combined using the Hough transform. As the features of A are computed only once, the algorithm can find quickly many different sub-templates in A, and it is Suitable for finding many query images in A, multi-scale searching and partial occlusion-robust template matching. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary patterns. Here, we investigate how the performance of this network on pattern recognition task is altered when neurons are removed and the weights of the synapses corresponding to these deleted neurons are divided among the remaining synapses. Five distinct ways of distributing such weights are evaluated. We speculate how this numerical work about synaptic compensation may help to guide experimental studies on memory rehabilitation interventions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many engineering applications, the time coordination of geographically separated events is of fundamental importance, as in digital telecommunications and integrated digital circuits. Mutually connected (MC) networks are very good candidates for some new types of application, such as wireless sensor networks. This paper presents a study on the behavior of MC networks of digital phase-locked loops (DPLLs). Analytical results are derived showing that, even for static networks without delays, different synchronous states may exist for the network. An upper bound for the number of such states is also presented. Numerical simulations are used to show the following results: (i) the synchronization precision in MC DPLLs networks; (ii) the existence of synchronous states for the network does not guarantee its achievement and (iii) different synchronous states may be achieved for different initial conditions. These results are important in the neural computation context. as in this case, each synchronous state may be associated to a different analog memory information. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concentrations of major, minor and trace metals were measured in water samples collected from five shallow Antarctic lakes (Carezza, Edmonson Point (No 14 and 15a), Inexpressible Island and Tarn Flat) found in Terra Nova Bay (northern Victoria Land, Antarctica) during the Italian Expeditions of 1993-2001. The total concentrations of a large suite of elements (Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Gd, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Rb, Sc, Si, Sr, Ta, Ti, U, V, Y, W, Zn and Zr) were determined using spectroscopic techniques (ICP-AES, GF-AAS and ICP-MS). The results are similar to those obtained for the freshwater lakes of the Larsemann Hills, East Antarctica, and for the McMurdo Dry Valleys. Principal Component Analysis (PCA) and Cluster Analysis (CA) were performed to identify groups of samples with similar characteristics and to find correlations between the variables. The variability observed within the water samples is closely connected to the sea spray input; hence, it is primarily a consequence of geographical and meteorological factors, such as distance from the ocean and time of year. The trace element levels, in particular those of heavy metals, are very low, suggesting an origin from natural sources rather than from anthropogenic contamination.