918 resultados para Pattern recognition techniques


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrocardiographic (ECG) signals are emerging as a recent trend in the field of biometrics. In this paper, we propose a novel ECG biometric system that combines clustering and classification methodologies. Our approach is based on dominant-set clustering, and provides a framework for outlier removal and template selection. It enhances the typical workflows, by making them better suited to new ECG acquisition paradigms that use fingers or hand palms, which lead to signals with lower signal to noise ratio, and more prone to noise artifacts. Preliminary results show the potential of the approach, helping to further validate the highly usable setups and ECG signals as a complementary biometric modality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liver steatosis is mainly a textural abnormality of the hepatic parenchyma due to fat accumulation on the hepatic vesicles. Today, the assessment is subjectively performed by visual inspection. Here a classifier based on features extracted from ultrasound (US) images is described for the automatic diagnostic of this phatology. The proposed algorithm estimates the original ultrasound radio-frequency (RF) envelope signal from which the noiseless anatomic information and the textural information encoded in the speckle noise is extracted. The features characterizing the textural information are the coefficients of the first order autoregressive model that describes the speckle field. A binary Bayesian classifier was implemented and the Bayes factor was calculated. The classification has revealed an overall accuracy of 100%. The Bayes factor could be helpful in the graphical display of the quantitative results for diagnosis purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis, also known as, fatty liver, from ultrasound images. The features, automatically extracted from the ultrasound images used by the classifier, are basically the ones used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The main novelty of the method is the utilization of the speckle noise that corrupts the ultrasound images to compute textural features of the liver parenchyma relevant for the diagnosis. The algorithm uses the Bayesian framework to compute a noiseless image, containing anatomic and echogenic information of the liver and a second image containing only the speckle noise used to compute the textural features. The classification results, with the Bayes classifier using manually classified data as ground truth show that the automatic classifier reaches an accuracy of 95% and a 100% of sensitivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática - Área de Especialização em Sistemas Gráficos e Multimédia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Na atualidade, está a emergir um novo paradigma de interação, designado por Natural User Interface (NUI) para reconhecimento de gestos produzidos com o corpo do utilizador. O dispositivo de interação Microsoft Kinect foi inicialmente concebido para controlo de videojogos, para a consola Xbox360. Este dispositivo demonstra ser uma aposta viável para explorar outras áreas, como a do apoio ao processo de ensino e de aprendizagem para crianças do ensino básico. O protótipo desenvolvido visa definir um modo de interação baseado no desenho de letras no ar, e realizar a interpretação dos símbolos desenhados, usando os reconhecedores de padrões Kernel Discriminant Analysis (KDA), Support Vector Machines (SVM) e $N. O desenvolvimento deste projeto baseou-se no estudo dos diferentes dispositivos NUI disponíveis no mercado, bibliotecas de desenvolvimento NUI para este tipo de dispositivos e algoritmos de reconhecimento de padrões. Com base nos dois elementos iniciais, foi possível obter uma visão mais concreta de qual o hardware e software disponíveis indicados à persecução do objetivo pretendido. O reconhecimento de padrões constitui um tema bastante extenso e complexo, de modo que foi necessária a seleção de um conjunto limitado deste tipo de algoritmos, realizando os respetivos testes por forma a determinar qual o que melhor se adequava ao objetivo pretendido. Aplicando as mesmas condições aos três algoritmos de reconhecimento de padrões permitiu avaliar as suas capacidades e determinar o $N como o que apresentou maior eficácia no reconhecimento. Por último, tentou-se averiguar a viabilidade do protótipo desenvolvido, tendo sido testado num universo de elementos de duas faixas etárias para determinar a capacidade de adaptação e aprendizagem destes dois grupos. Neste estudo, constatou-se um melhor desempenho inicial ao modo de interação do grupo de idade mais avançada. Contudo, o grupo mais jovem foi revelando uma evolutiva capacidade de adaptação a este modo de interação melhorando progressivamente os resultados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present paper we assess the performance of information-theoretic inspired risks functionals in multilayer perceptrons with reference to the two most popular ones, Mean Square Error and Cross-Entropy. The information-theoretic inspired risks, recently proposed, are: HS and HR2 are, respectively, the Shannon and quadratic Rényi entropies of the error; ZED is a risk reflecting the error density at zero errors; EXP is a generalized exponential risk, able to mimic a wide variety of risk functionals, including the information-thoeretic ones. The experiments were carried out with multilayer perceptrons on 35 public real-world datasets. All experiments were performed according to the same protocol. The statistical tests applied to the experimental results showed that the ubiquitous mean square error was the less interesting risk functional to be used by multilayer perceptrons. Namely, mean square error never achieved a significantly better classification performance than competing risks. Cross-entropy and EXP were the risks found by several tests to be significantly better than their competitors. Counts of significantly better and worse risks have also shown the usefulness of HS and HR2 for some datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the estimation of surfaces from a set of 3D points using the unified framework described in [1]. This framework proposes the use of competitive learning for curve estimation, i.e., a set of points is defined on a deformable curve and they all compete to represent the available data. This paper extends the use of the unified framework to surface estimation. It o shown that competitive learning performes better than snakes, improving the model performance in the presence of concavities and allowing to desciminate close surfaces. The proposed model is evaluated in this paper using syntheticdata and medical images (MRI and ultrasound images).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Evidence Accumulation Clustering (EAC) paradigm is a clustering ensemble method which derives a consensus partition from a collection of base clusterings obtained using different algorithms. It collects from the partitions in the ensemble a set of pairwise observations about the co-occurrence of objects in a same cluster and it uses these co-occurrence statistics to derive a similarity matrix, referred to as co-association matrix. The Probabilistic Evidence Accumulation for Clustering Ensembles (PEACE) algorithm is a principled approach for the extraction of a consensus clustering from the observations encoded in the co-association matrix based on a probabilistic model for the co-association matrix parameterized by the unknown assignments of objects to clusters. In this paper we extend the PEACE algorithm by deriving a consensus solution according to a MAP approach with Dirichlet priors defined for the unknown probabilistic cluster assignments. In particular, we study the positive regularization effect of Dirichlet priors on the final consensus solution with both synthetic and real benchmark data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The robotics community is concerned with the ability to infer and compare the results from researchers in areas such as vision perception and multi-robot cooperative behavior. To accomplish that task, this paper proposes a real-time indoor visual ground truth system capable of providing accuracy with at least more magnitude than the precision of the algorithm to be evaluated. A multi-camera architecture is proposed under the ROS (Robot Operating System) framework to estimate the 3D position of objects and the implementation and results were contextualized to the Robocup Middle Size League scenario.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The process of visually exploring underwater environments is still a complex problem. Underwater vision systems require complementary means of sensor information to help overcome water disturbances. This work proposes the development of calibration methods for a structured light based system consisting on a camera and a laser with a line beam. Two different calibration procedures that require only two images from different viewpoints were developed and tested in dry and underwater environments. Results obtained show, an accurate calibration for the camera/projector pair with errors close to 1 mm even in the presence of a small stereos baseline.