970 resultados para Partial redundancy analysis (pRDA)
Resumo:
The purposes of this study were to photoelastically measure the biomechanical behavior of 4 implants retaining different cantilevered bar mandibular overdenture designs and to compare a fixed partial denture (FPD). A photoelastic model of a human edentulous mandible was fabricated, which contained 4 screw-type implants (3.75 x 10 mm) embedded in the parasymphyseal area. An FPD and 3 overdenture designs with the following attachments were evaluated: 3 plastic Hader clips, 1 Hader clip with 2 posterior resilient cap attachments, and 3 ball/O-ring attachments. Vertical occlusal forces of 100 N were applied between the central incisor and unilaterally to the right and left second premolars and second molars. Stresses that developed in the supporting structure were monitored photoelastically and recorded photographically. The results showed that the anterior loading, the overdenture with 3 plastic Hader clips, displayed the largest stress concentration at the medium implant. With premolar loading, the FPD and overdenture with 3 plastic Hader clips displayed the highest stresses to the ipsilateral terminal implant. With molar loading, the overdenture with 3 ball/O-ring attachments displayed the most uniform stress distribution in the posterior edentulous ridge, with less overloading in the terminal implant. It was concluded that vertical forces applied to the bar-clip overdenture and FPD created immediate stress patterns of greater magnitude and concentration on the ipsilateral implants, whereas the ball/O-ring attachments transferred minimal stress to the implants. The increased cantilever in the FPD caused the highest stresses to the terminal implant.
Resumo:
The aim of this study was to use two-dimensional finite element method to evaluate the displacement and stress distribution transmitted by a distal extension removable partial denture (DERPD) associated with an implant placed at different inclinations (0, 5, 15, and 30 degrees) in the second molar region of the edentulous mandible ridge. Six hemimandibular models were created: model A, only with the presence of the natural tooth 33; model B, similar to model A, with the presence of a conventional DERPD replacing the missing teeth; model C, similar to the previous model, with a straight implant (0 degrees) in the distal region of the ridge, under the denture base; model D, similar to model C, with the implant angled at 5 degrees in the mesial direction; model E, similar to model C, with the implant angled at 15 degrees in the mesial direction; and model F, similar to ME, with the implant angled at 30 degrees in the mesial direction. The models were created with the use of the AutoCAD 2000 program (Autodesk, Inc, San Rafael, CA) and processed for finite element analysis by the ANSYS 8.0 program (Swanson Analysis Systems, Houston, PA). The force applied was vertical of 50 N on each cusp tip. The results showed that the introduction of the RPD overloaded the supporting structures of the RPD and that the introduction of the implant helped to relieve the stresses of the mucosa alveolar, cortical bone, and trabecular bone. The best stress distribution occurred in model D with the implant angled at 5 degrees. The use of an implant as a support decreased the displacement of alveolar mucosa for all inclinations simulated. The stress distribution transmitted by the DERPD to the supporting structures was improved by the use of straight or slightly inclined implants. According to the displacement analysis and von Mises stress, it could be expected that straight or slightly inclined implants do not represent biomechanical risks to use.
Resumo:
Purpose: The aim of this research was to assess, by means of, the bi-dimensional finite element method, the best implant location in the alveolar edge, through stress distribution and support structure displacement of a distal extension removable partial denture associated with an osseointegrated implant of 10.0 x .75 mm, acting as abutment for the denture base.Methods and Materials: Five models in sagittal cut were used to represent: model A-hemi arch containing natural tooth 33 and the distal alveolar edge; model B-similar to model A, but with a conventional removable partial denture to replace the absent teeth; model C (MC)-similar to the previous one, with an implant in the distal region of the edge under the denture base; model D-similar to MC, with the implant in the central region of the edge; model E-similar to MC, with an implant in the mesial region of the edge. With the aid of the finite element program ANSYS 8.0, the models were loaded with strictly vertical forces of 50 N on each cusp tip. Displacement and von Mises Maps were plotted for visualization of results.Results: The introduction of implant diminished the tendency of intrusion of the removable partial denture in all situations. The maximum stress was observed on implant in all situations. Approximating implant in direction of support teeth was benefit for stress distribution.Conclusion: Model D presented the lowest value for maximum tendency to displacement when compared with those found in the other models; model E demonstrated better relief with regard to demand from the abutment tooth; locating the implant near of the abutment tooth influenced positively the distribution of stresses on the analyzed structures.
Resumo:
The aim of this study was to evaluate the biomechanical behavior of a mandibular distal extension removable partial denture (DERPD) associated with an implant and different retention system, by bidimensional finite element method. Five hemimandible models with a canine and external hexagon implant at second molar region associated with DERPD were simulated: model A, hemimandible with a canine and a DERPD; model B, hemimandible with a canine and implant with a healing abutment associated to a DERPD; model C, hemimandible with a canine and implant with an ERA attachment associated to a DERPD; model D, hemimandible with a canine and implant with an O'ring attachment associated to a DERPD; and model E, hemimandible with a canine and implant-supported prosthesis associated to a DERPD. Cusp tips were loaded with 50 N of axial or oblique force (45 degrees). Finite element analysis was performed in ANSYS 9.0. model E showed the higher displacement and overload in the supporting tissues; the patterns of stress distribution around the dental apex of models B, C, and D were similar. The association between a DERPD and an osseointegrated implant using the ERA or O'ring systems shows lower stress values. Oblique forces showed higher stress values and displacement. Oblique forces increased the displacement and stress levels in all models; model C displayed the best stress distribution in the supporting structures; healing abutment, ERA, and O'ring systems were viable with RPD, but DERPD association with a single implant-supported prosthesis was nonviable.
Resumo:
Complete and partial loss of maxillary bone may jeopardize oral physiology and generate complications as oral-sinus-nasal communication. Palatal obturator prostheses are a treatment alternative for rehabilitation of these patients. The aim of this study was to assess stress distribution, through photoelasticity, on palatal obturator prostheses associated with different attachment systems (o'ring, bar clip, and o'ring/bar clip) of implants and submitted to relining. Two photoelastic models were fabricated according to an experimental maxillary model with oral-sinus-nasal communication. One model did not present implants, whereas the other included 2 implants with 13.0 mm in length in the left ridge. Four colorless maxillary obturator prostheses were fabricated and relined with soft silicone. One of these prostheses presented no attachment system, whereas the remaining prostheses included attachment systems adapted to the implants. The assembly (model/attachment system/prosthesis) was positioned in a circular polariscope during loading with 100 N at 10 mm/s. The results were based on observation during the experiment and photographic records of stress on the photoelastic model. The bar clip system exhibited the highest stress concentration followed by o'ring/bar clip and o'ring systems. The attachment systems presented different stress distribution with greater concentration surrounding the implants and homogenous stress distribution on the photoelastic model without implants. The highest concentration of fringes occurred, in ascending order, with o'ring, o'ring/bar clip, and bar clip systems.
Resumo:
The use of implants to rehabilitation of total edentulous, partial edentulous or single tooth is increasing, it is due to the high rate of success that this type of treatment present. The objective of this study was to analyze the mechanical behavior of different positions of two dental implants in a rehabilitation of 4 teeth in the region of maxilla anterior. The groups studied were divided according the positioning of the implants. The Group 1: Internal Hexagonal implant in position of lateral incisors and pontic in region of central incisors; Group 2: Internal Hexagonal implant in position of central incisors and cantilever of the lateral incisors and Group3 - : Internal Hexagonal implants alternate with suspended elements. The Electronic Speckle Pattern Interferometry (ESPI) technique was selected for the mechanical evaluation of the 3 groups performance. The results are shown in interferometric phase maps representing the displacement field of the prosthetic structure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Morphological differences among 6 species of marine fishes belonging to 2 subfamilies of the family Serranidae (Serraninae: Dules auriga, Diplectrum formosum, and D, radiale; Epinephelinae: Epinephelus marginatus, Mycteroperca acutirostris, and M. bonaci) were studied by the geometric morphometric method of thin-plate splines and multivariate analysis of partial-warp scores. The decomposition of shape variation into uniform and nonaffine components of shape change indicate that major differences among species are related to both components of shape variation. Significant differences were found among species with respect to the uniform components, but there is no clear separation of taxonomic groups related to these components, and species are instead separated on the basis of body height and caudal peduncle length. Non-uniform changes in body shape, in turn, clearly differentiate the species of Serraninae and Epinephelinae. These shape changes are probably related to differences in habitat and feeding habits among the species.
Resumo:
The extensive use of buffalo in agriculture, especially in developing countries, begs for genetic resources to evaluate and improve traits important to local and regional economies. Brazil presents the largest water buffalo populations in the New World, with 1 1 million heads including swamp and river types. To design rational breeding strategies for optimum utilization and conservation of available genetic variability in the Brazilian buffalo's population, it is essential to understand their genetic architecture and relationship among various breeds. This depends, in part, on the knowledge of their genetic structure based on molecular markers like microsatellites. In the present study, we developed six enriched partial genomic libraries for river buffalo using selective hybridization methods. Genomic DNA was hybridized with six different arrays of repeat motif, 5' biotinylated - (CA)(15), (CT)(15), (AGG)(8), (GAAA)(8), (GATA)(8), (AAAAC)(8) - and bound to streptavidin coated beads. The cloning process generated a total of 1920 recombinant clones. Up to date, 487 were directly sequenced for the presence of repeats, from which 13 have been positive for presence of repeats as follows: 9 for di-nucleotide repeats, 3 for tri-nucleotide repeats and 1 for tetra-nucleotide repeat. PCR primer pairs for the isolated microsatellites are under construction to determine optimum annealing temperature. These microsatellites will be useful for studies involving phylogenetic relationships, genome mapping and genetic diversity analysis within buffalo populations worldwide.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this Letter we investigate Lie symmetries of a (2 + 1)-dimensional integrable generalization of the Camassa-Holm (CH) equation. Through the similarity reductions we obtain four different (1 + 1)-dimensional systems of partial differential equations in which one of them turns out to be a (1 + 1)-dimensional CH equation. We establish their integrability by providing the Lax pair for all of them. Further, we present a brief analysis for some types of particular solutions which include the cuspon, peakon and soliton solutions for the two-dimensional generalization of the CH equation. (C) 2000 Published by Elsevier B.V. B.V.