977 resultados para Partial Differential Equation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Työn tavoitteena oli kehittää nopeasti konvergoiva kuorielementti epälineaarisesti joustavien kappaleiden analysointiin. Kuorielementti perustuu absoluuttisten solmukoordinaattien menetelmään ja se hyödyntää kaarevuuden kuvausta elastisten voimien määrityksessä. Kehitettyä elementtiä verrattiin kontinuumimekaniikalla kehitettyyn kuorielementtiin ja kaupallisen elementtimenetelmän kuorielementtiin. Yksinkertaisimman kuormitustapauksen tuloksia verrattiin teknisen taivutusteorian mukaiseen analyyttiseen ratkaisuun. Staattisten testien tulokset tässä työssä kehitetyllä kuorielementillä vastasivat hyvin kaupallisella elementtimenetelmällä saatuja tuloksia. Deformaatioiden ollessa geometrisesti lineaarisella alueella, kehitetyllä kuorielementillä saadut tulokset vastasivat paremmin sekä analyyttistä ratkaisua että kaupallisella elementtimenetelmällä saatuja tuloksia kuin aiemman kontinuumimekaniikkaan perustuvan kuorielementin tulokset. Kehitetyn kuorielementin ongelmana verrattuna kontinuumimekaniikkaan perustuvaan elementtiin on monimutkaisempi kinematiikan kuvaus. Tästä on seurauksena laskenta-ajan huomattava kasvaminen. Jatkossa kannattaisi keskittyä numeeristen ratkaisumenetelmien kehittämiseen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We treat some subtleties concerning the First Law of Thermodynamics and discuss the inherent difficulties, namely the interpretation of the heat and the work differentials. By proposing a new differential equation for the First Law, which is written using both system and neighborhood variables, we overcome the mentioned difficulties and establish a criterion for the definition of heat and work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The known properties of diffusion on fractals are reviewed in order to give a general outlook of these dynamic processes. After that, we propose a description developed in the context of the intrinsic metric of fractals, which leads us to a differential equation able to describe diffusion in real fractals in the asymptotic regime. We show that our approach has a stronger physical justification than previous works on this field. The most important result we present is the introduction of a dependence on time and space for the conductivity in fractals, which is deduced by scaling arguments and supported by computer simulations. Finally, the diffusion equation is used to introduce the possibility of reaction-diffusion processes on fractals and analyze their properties. Specifically, an analytic expression for the speed of the corresponding travelling fronts, which can be of great interest for application purposes, is derived

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of this thesis is to show that plate strips subjected to transverse line loads can be analysed by using the beam on elastic foundation (BEF) approach. It is shown that the elastic behaviour of both the centre line section of a semi infinite plate supported along two edges, and the free edge of a cantilever plate strip can be accurately predicted by calculations based on the two parameter BEF theory. The transverse bending stiffness of the plate strip forms the foundation. The foundation modulus is shown, mathematically and physically, to be the zero order term of the fourth order differential equation governing the behaviour of BEF, whereas the torsion rigidity of the plate acts like pre tension in the second order term. Direct equivalence is obtained for harmonic line loading by comparing the differential equations of Levy's method (a simply supported plate) with the BEF method. By equating the second and zero order terms of the semi infinite BEF model for each harmonic component, two parameters are obtained for a simply supported plate of width B: the characteristic length, 1/ λ, and the normalized sum, n, being the effect of axial loading and stiffening resulting from the torsion stiffness, nlin. This procedure gives the following result for the first mode when a uniaxial stress field was assumed (ν = 0): 1/λ = √2B/π and nlin = 1. For constant line loading, which is the superimposition of harmonic components, slightly differing foundation parameters are obtained when the maximum deflection and bending moment values of the theoretical plate, with v = 0, and BEF analysis solutions are equated: 1 /λ= 1.47B/π and nlin. = 0.59 for a simply supported plate; and 1/λ = 0.99B/π and nlin = 0.25 for a fixed plate. The BEF parameters of the plate strip with a free edge are determined based solely on finite element analysis (FEA) results: 1/λ = 1.29B/π and nlin. = 0.65, where B is the double width of the cantilever plate strip. The stress biaxial, v > 0, is shown not to affect the values of the BEF parameters significantly the result of the geometric nonlinearity caused by in plane, axial and biaxial loading is studied theoretically by comparing the differential equations of Levy's method with the BEF approach. The BEF model is generalised to take into account the elastic rotation stiffness of the longitudinal edges. Finally, formulae are presented that take into account the effect of Poisson's ratio, and geometric non linearity, on bending behaviour resulting from axial and transverse inplane loading. It is also shown that the BEF parameters of the semi infinite model are valid for linear elastic analysis of a plate strip of finite length. The BEF model was verified by applying it to the analysis of bending stresses caused by misalignments in a laboratory test panel. In summary, it can be concluded that the advantages of the BEF theory are that it is a simple tool, and that it is accurate enough for specific stress analysis of semi infinite and finite plate bending problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stochastic approximation methods for stochastic optimization are considered. Reviewed the main methods of stochastic approximation: stochastic quasi-gradient algorithm, Kiefer-Wolfowitz algorithm and adaptive rules for them, simultaneous perturbation stochastic approximation (SPSA) algorithm. Suggested the model and the solution of the retailer's profit optimization problem and considered an application of the SQG-algorithm for the optimization problems with objective functions given in the form of ordinary differential equation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stochastic differential equation (SDE) is a differential equation in which some of the terms and its solution are stochastic processes. SDEs play a central role in modeling physical systems like finance, Biology, Engineering, to mention some. In modeling process, the computation of the trajectories (sample paths) of solutions to SDEs is very important. However, the exact solution to a SDE is generally difficult to obtain due to non-differentiability character of realizations of the Brownian motion. There exist approximation methods of solutions of SDE. The solutions will be continuous stochastic processes that represent diffusive dynamics, a common modeling assumption for financial, Biology, physical, environmental systems. This Masters' thesis is an introduction and survey of numerical solution methods for stochastic differential equations. Standard numerical methods, local linearization methods and filtering methods are well described. We compute the root mean square errors for each method from which we propose a better numerical scheme. Stochastic differential equations can be formulated from a given ordinary differential equations. In this thesis, we describe two kind of formulations: parametric and non-parametric techniques. The formulation is based on epidemiological SEIR model. This methods have a tendency of increasing parameters in the constructed SDEs, hence, it requires more data. We compare the two techniques numerically.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This master thesis presents a study on the requisite cooling of an activated sludge process in paper and pulp industry. The energy consumption of paper and pulp industry and it’s wastewater treatment plant in particular is relatively high. It is therefore useful to understand the wastewater treatment process of such industries. The activated sludge process is a biological mechanism which degrades carbonaceous compounds that are present in waste. The modified activated sludge model constructed here aims to imitate the bio-kinetics of an activated sludge process. However, due to the complicated non-linear behavior of the biological process, modelling this system is laborious and intriguing. We attempt to find a system solution first using steady-state modelling of Activated Sludge Model number 1 (ASM1), approached by Euler’s method and an ordinary differential equation solver. Furthermore, an enthalpy study of paper and pulp industry’s vital pollutants was carried out and applied to revise the temperature shift over a period of time to formulate the operation of cooling water. This finding will lead to a forecast of the plant process execution in a cost-effective manner and management of effluent efficiency. The final stage of the thesis was achieved by optimizing the steady state of ASM1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Travail réalisé en cotutelle avec l'université Paris-Diderot et le Commissariat à l'Energie Atomique sous la direction de John Harnad et Bertrand Eynard.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nous présentons une nouvelle approche pour formuler et calculer le temps de séparation des événements utilisé dans l’analyse et la vérification de différents systèmes cycliques et acycliques sous des contraintes linéaires-min-max avec des composants ayant des délais finis et infinis. Notre approche consiste à formuler le problème sous la forme d’un programme entier mixte, puis à utiliser le solveur Cplex pour avoir les temps de séparation entre les événements. Afin de démontrer l’utilité en pratique de notre approche, nous l’avons utilisée pour la vérification et l’analyse d’une puce asynchrone d’Intel de calcul d’équations différentielles. Comparée aux travaux précédents, notre approche est basée sur une formulation exacte et elle permet non seulement de calculer le maximum de séparation, mais aussi de trouver un ordonnancement cyclique et de calculer les temps de séparation correspondant aux différentes périodes possibles de cet ordonnancement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les détecteurs à pixels Medipix ont été développés par la collaboration Medipix et permettent de faire de l'imagerie en temps réel. Leur surface active de près de $2\cm^2$ est divisée en 65536~pixels de $55\times 55\um^2$ chacun. Seize de ces détecteurs, les Medipix2, sont installés dans l'expérience ATLAS au CERN afin de mesurer en temps réel les champs de radiation produits par les collisions de hadrons au LHC. Ils seront prochainement remplacés par des Timepix, la plus récente version de ces détecteurs, qui permettent de mesurer directement l'énergie déposée dans chaque pixel en mode \textit{time-over-threshold} (TOT) lors du passage d'une particule dans le semi-conducteur. En vue d'améliorer l'analyse des données recueillies avec ces détecteurs Timepix dans ATLAS, un projet de simulation Geant4 a été amorcé par John Id\'{a}rraga à l'Université de Montréal. Dans le cadre de l'expérience ATLAS, cette simulation pourra être utilisée conjointement avec Athena, le programme d'analyse d'ATLAS, et la simulation complète du détecteur ATLAS. Sous l'effet de leur propre répulsion, les porteurs de charge créés dans le semi-conducteur sont diffusés vers les pixels adjacents causant un dépôt d'énergie dans plusieurs pixels sous l'effet du partage de charges. Un modèle effectif de cette diffusion latérale a été développé pour reproduire ce phénomène sans résoudre d'équation différentielle de transport de charge. Ce modèle, ainsi que le mode TOT du Timepix, qui permet de mesurer l'énergie déposée dans le détecteur, ont été inclus dans la simulation afin de reproduire adéquatement les traces laissées par les particules dans le semi-conducteur. On a d'abord étalonné le détecteur pixel par pixel à l'aide d'une source de $\Am$ et de $\Ba$. Ensuite, on a validé la simulation à l'aide de mesures d'interactions de protons et de particules $\alpha$ produits au générateur Tandem van de Graaff du Laboratoire René-J.-A.-Lévesque de l'Université de Montréal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce mémoire est une partie d’un programme de recherche qui étudie la superintégrabilité des systèmes avec spin. Plus particulièrement, nous nous intéressons à un hamiltonien avec interaction spin-orbite en trois dimensions admettant une intégrale du mouvement qui est un polynôme matriciel d’ordre deux dans l’impulsion. Puisque nous considérons un hamiltonien invariant sous rotation et sous parité, nous classifions les intégrales du mouvement selon des multiplets irréductibles de O(3). Nous calculons le commutateur entre l’hamiltonien et un opérateur général d’ordre deux dans l’impulsion scalaire, pseudoscalaire, vecteur et pseudovecteur. Nous donnons la classification complète des systèmes admettant des intégrales du mouvement scalaire et vectorielle. Nous trouvons une condition nécessaire à remplir pour le potentiel sous forme d’une équation différentielle pour les cas pseudo-scalaire et pseudo-vectoriel. Nous utilisons la réduction par symétrie pour obtenir des solutions particulières de ces équations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.