956 resultados para Parallel Evolutionary Algorithms
Resumo:
Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode these forests. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problems which we optimize using eight different evolutionary computation algorithms encoding individuals of the population using the proposed representation. The algorithms we use are: estimation of distribution algorithm, generational genetic algorithm, steady-state genetic algorithm, covariance matrix adaptation evolution strategy, differential evolution, elitist evolution strategy, non-elitist evolution strategy and particle swarm optimization. The best results are for the estimation of distribution algorithms and both types of genetic algorithms, although the genetic algorithms are significantly faster.
Resumo:
Pairwise sequence comparison methods have been assessed using proteins whose relationships are known reliably from their structures and functions, as described in the scop database [Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia C. (1995) J. Mol. Biol. 247, 536–540]. The evaluation tested the programs blast [Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). J. Mol. Biol. 215, 403–410], wu-blast2 [Altschul, S. F. & Gish, W. (1996) Methods Enzymol. 266, 460–480], fasta [Pearson, W. R. & Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85, 2444–2448], and ssearch [Smith, T. F. & Waterman, M. S. (1981) J. Mol. Biol. 147, 195–197] and their scoring schemes. The error rate of all algorithms is greatly reduced by using statistical scores to evaluate matches rather than percentage identity or raw scores. The E-value statistical scores of ssearch and fasta are reliable: the number of false positives found in our tests agrees well with the scores reported. However, the P-values reported by blast and wu-blast2 exaggerate significance by orders of magnitude. ssearch, fasta ktup = 1, and wu-blast2 perform best, and they are capable of detecting almost all relationships between proteins whose sequence identities are >30%. For more distantly related proteins, they do much less well; only one-half of the relationships between proteins with 20–30% identity are found. Because many homologs have low sequence similarity, most distant relationships cannot be detected by any pairwise comparison method; however, those which are identified may be used with confidence.
Resumo:
There is a need for faster and more sensitive algorithms for sequence similarity searching in view of the rapidly increasing amounts of genomic sequence data available. Parallel processing capabilities in the form of the single instruction, multiple data (SIMD) technology are now available in common microprocessors and enable a single microprocessor to perform many operations in parallel. The ParAlign algorithm has been specifically designed to take advantage of this technology. The new algorithm initially exploits parallelism to perform a very rapid computation of the exact optimal ungapped alignment score for all diagonals in the alignment matrix. Then, a novel heuristic is employed to compute an approximate score of a gapped alignment by combining the scores of several diagonals. This approximate score is used to select the most interesting database sequences for a subsequent Smith–Waterman alignment, which is also parallelised. The resulting method represents a substantial improvement compared to existing heuristics. The sensitivity and specificity of ParAlign was found to be as good as Smith–Waterman implementations when the same method for computing the statistical significance of the matches was used. In terms of speed, only the significantly less sensitive NCBI BLAST 2 program was found to outperform the new approach. Online searches are available at http://dna.uio.no/search/
Resumo:
The reconstruction of multitaxon trees from molecular sequences is confounded by the variety of algorithms and criteria used to evaluate trees, making it difficult to compare the results of different analyses. A global method of multitaxon phylogenetic reconstruction described here, Bootstrappers Gambit, can be used with any four-taxon algorithm, including distance, maximum likelihood, and parsimony methods. It incorporates a Bayesian-Jeffreys'-bootstrap analysis to provide a uniform probability-based criterion for comparing the results from diverse algorithms. To examine the usefulness of the method, the origin of the eukaryotes has been investigated by the analysis of ribosomal small subunit RNA sequences. Three common algorithms (paralinear distances, Jukes-Cantor distances, and Kimura distances) support the eocyte topology, whereas one (maximum parsimony) supports the archaebacterial topology, suggesting that the eocyte prokaryotes are the closest prokaryotic relatives of the eukaryotes.
Resumo:
Despite the critical role that terrestrial vegetation plays in the Earth's carbon cycle, very little is known about the potential evolutionary responses of plants to anthropogenically induced increases in concentrations of atmospheric CO2. We present experimental evidence that rising CO2 concentration may have a direct impact on the genetic composition and diversity of plant populations but is unlikely to result in selection favoring genotypes that exhibit increased productivity in a CO2-enriched atmosphere. Experimental populations of an annual plant (Abutilon theophrasti, velvetleaf) and a temperate forest tree (Betula alleghaniensis, yellow birch) displayed responses to increased CO2 that were both strongly density-dependent and genotype-specific. In competitive stands, a higher concentration of CO2 resulted in pronounced shifts in genetic composition, even though overall CO2-induced productivity enhancements were small. For the annual species, quantitative estimates of response to selection under competition were 3 times higher at the elevated CO2 level. However, genotypes that displayed the highest growth responses to CO2 when grown in the absence of competition did not have the highest fitness in competitive stands. We suggest that increased CO2 intensified interplant competition and that selection favored genotypes with a greater ability to compete for resources other than CO2. Thus, while increased CO2 may enhance rates of selection in populations of competing plants, it is unlikely to result in the evolution of increased CO2 responsiveness or to operate as an important feedback in the global carbon cycle. However, the increased intensity of selection and drift driven by rising CO2 levels may have an impact on the genetic diversity in plant populations.
Resumo:
Human transcription initiation factor TFIID is composed of the TATA-binding polypeptide (TBP) and at least 13 TBP-associated factors (TAFs) that collectively or individually are involved in activator-dependent transcription. To investigate protein-protein interactions involved in TFIID assembly and in TAF-mediated activator functions, we have cloned and expressed cDNAs encoding human TAFII80 and TAFII31. Coimmunoprecipitation assays showed that TAFII80 interacted with TAFII250, TAFII31, TAFII20, and TBP, but not with TAFII55. Similar assays showed that TAFII80 interacted with TFIIE alpha and with TFIIF alpha (RAP74) but not with TFIIB, TFIIE beta, or TFIIF beta (RAP30). Further studies with TAFII80 mutations revealed three distinct interaction domains which fall within regions conserved in human TAFII80, Drosophila TAFII60, and yeast TAFII60. The N terminus of TAFII80 (residues 1-100) interacts with both TAFII31 and TAFII20, while two C-terminal regions are involved, respectively, in interactions with TAFII250 and TFIIF alpha (RAP74) (residues 203-276) and with TBP and TFIIE alpha (residues 377-505). The interactions between TAFII80 and general factors TFIIE alpha and TFIIF alpha (RAP74) could be important for recruitment of GTFs during activator-dependent transcription. Because TAFs 80, 31, and 20 show sequence similarities to histones H4, H3, and H2B, as well as some parallel interactions, this subset of TAFs may form a related core structure within TFIID.
Resumo:
Given a territory composed of basic geographical units, the delineation of local labour market areas (LLMAs) can be seen as a problem in which those units are grouped subject to multiple constraints. In previous research, standard genetic algorithms were not able to find valid solutions, and a specific evolutionary algorithm was developed. The inclusion of multiple ad hoc operators allowed the algorithm to find better solutions than those of a widely-used greedy method. However, the percentage of invalid solutions was still very high. In this paper we improve that evolutionary algorithm through the inclusion of (i) a reparation process, that allows every invalid individual to fulfil the constraints and contribute to the evolution, and (ii) a hillclimbing optimisation procedure for each generated individual by means of an appropriate reassignment of some of its constituent units. We compare the results of both techniques against the previous results and a greedy method.
Resumo:
A parallel algorithm for image noise removal is proposed. The algorithm is based on peer group concept and uses a fuzzy metric. An optimization study on the use of the CUDA platform to remove impulsive noise using this algorithm is presented. Moreover, an implementation of the algorithm on multi-core platforms using OpenMP is presented. Performance is evaluated in terms of execution time and a comparison of the implementation parallelised in multi-core, GPUs and the combination of both is conducted. A performance analysis with large images is conducted in order to identify the amount of pixels to allocate in the CPU and GPU. The observed time shows that both devices must have work to do, leaving the most to the GPU. Results show that parallel implementations of denoising filters on GPUs and multi-cores are very advisable, and they open the door to use such algorithms for real-time processing.
Resumo:
"UILU-ENG 78 1745."
Resumo:
Originally presented as the author's thesis, University of Illinois at Urbana-Champaign.
Resumo:
Mechanisms of speciation are not well understood, despite decades of study. Recent work has focused on how natural and sexual selection cause sexual isolation. Here, we investigate the roles of divergent natural and sexual selection in the evolution of sexual isolation between sympatric species of threespine sticklebacks. We test the importance of morphological and behavioral traits in conferring sexual isolation and examine to what extent these traits have diverged in parallel between multiple, independently evolved species pairs. We use the patterns of evolution in ecological and mating traits to infer the likely nature of selection on sexual isolation. Strong parallel evolution implicates ecologically based divergent natural and/or sexual selection, whereas arbitrary directionality implicates nonecological sexual selection or drift. In multiple pairs we find that sexual isolation arises in the same way: assortative mating on body size and asymmetric isolation due to male nuptial color. Body size and color have diverged in a strongly parallel manner, similar to ecological traits. The data implicate ecologically based divergent natural and sexual selection as engines of speciation in this group.
Resumo:
The scaling problems which afflict attempts to optimise neural networks (NNs) with genetic algorithms (GAs) are disclosed. A novel GA-NN hybrid is introduced, based on the bumptree, a little-used connectionist model. As well as being computationally efficient, the bumptree is shown to be more amenable to genetic coding lthan other NN models. A hierarchical genetic coding scheme is developed for the bumptree and shown to have low redundancy, as well as being complete and closed with respect to the search space. When applied to optimising bumptree architectures for classification problems the GA discovers bumptrees which significantly out-perform those constructed using a standard algorithm. The fields of artificial life, control and robotics are identified as likely application areas for the evolutionary optimisation of NNs. An artificial life case-study is presented and discussed. Experiments are reported which show that the GA-bumptree is able to learn simulated pole balancing and car parking tasks using only limited environmental feedback. A simple modification of the fitness function allows the GA-bumptree to learn mappings which are multi-modal, such as robot arm inverse kinematics. The dynamics of the 'geographic speciation' selection model used by the GA-bumptree are investigated empirically and the convergence profile is introduced as an analytical tool. The relationships between the rate of genetic convergence and the phenomena of speciation, genetic drift and punctuated equilibrium arc discussed. The importance of genetic linkage to GA design is discussed and two new recombination operators arc introduced. The first, linkage mapped crossover (LMX) is shown to be a generalisation of existing crossover operators. LMX provides a new framework for incorporating prior knowledge into GAs.Its adaptive form, ALMX, is shown to be able to infer linkage relationships automatically during genetic search.
Resumo:
With the ability to collect and store increasingly large datasets on modern computers comes the need to be able to process the data in a way that can be useful to a Geostatistician or application scientist. Although the storage requirements only scale linearly with the number of observations in the dataset, the computational complexity in terms of memory and speed, scale quadratically and cubically respectively for likelihood-based Geostatistics. Various methods have been proposed and are extensively used in an attempt to overcome these complexity issues. This thesis introduces a number of principled techniques for treating large datasets with an emphasis on three main areas: reduced complexity covariance matrices, sparsity in the covariance matrix and parallel algorithms for distributed computation. These techniques are presented individually, but it is also shown how they can be combined to produce techniques for further improving computational efficiency.
Resumo:
The trend in modal extraction algorithms is to use all the available frequency response functions data to obtain a global estimate of the natural frequencies, damping ratio and mode shapes. Improvements in transducer and signal processing technology allow the simultaneous measurement of many hundreds of channels of response data. The quantity of data available and the complexity of the extraction algorithms make considerable demands on the available computer power and require a powerful computer or dedicated workstation to perform satisfactorily. An alternative to waiting for faster sequential processors is to implement the algorithm in parallel, for example on a network of Transputers. Parallel architectures are a cost effective means of increasing computational power, and a larger number of response channels would simply require more processors. This thesis considers how two typical modal extraction algorithms, the Rational Fraction Polynomial method and the Ibrahim Time Domain method, may be implemented on a network of transputers. The Rational Fraction Polynomial Method is a well known and robust frequency domain 'curve fitting' algorithm. The Ibrahim Time Domain method is an efficient algorithm that 'curve fits' in the time domain. This thesis reviews the algorithms, considers the problems involved in a parallel implementation, and shows how they were implemented on a real Transputer network.
Resumo:
The focus of this study is development of parallelised version of severely sequential and iterative numerical algorithms based on multi-threaded parallel platform such as a graphics processing unit. This requires design and development of a platform-specific numerical solution that can benefit from the parallel capabilities of the chosen platform. Graphics processing unit was chosen as a parallel platform for design and development of a numerical solution for a specific physical model in non-linear optics. This problem appears in describing ultra-short pulse propagation in bulk transparent media that has recently been subject to several theoretical and numerical studies. The mathematical model describing this phenomenon is a challenging and complex problem and its numerical modeling limited on current modern workstations. Numerical modeling of this problem requires a parallelisation of an essentially serial algorithms and elimination of numerical bottlenecks. The main challenge to overcome is parallelisation of the globally non-local mathematical model. This thesis presents a numerical solution for elimination of numerical bottleneck associated with the non-local nature of the mathematical model. The accuracy and performance of the parallel code is identified by back-to-back testing with a similar serial version.