880 resultados para Papua
Resumo:
Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (<5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at <2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.
Resumo:
A number of intensely altered, dark xenoliths with palimpsest quench textures were recorded within altered dacitic host rocks at Site 1189 (Roman Ruins, PACMANUS) during Ocean Drilling Program (ODP) Leg 193. Several of these displayed puzzling marginal fringes, apparently of altered plagioclase with variolitic texture, protruding into adjacent host rocks. Despite their alteration, the xenoliths were interpreted as fragments of rapidly chilled, possibly olivine-bearing basalts incorporated into the dacitic magmas either within the crustal plumbing system or during eruption at the seafloor (figures F15, F16, F17, F42, and F43 in Shipboard Scientific Party, 2002, doi:10.2973/odp.proc.ir.193.104.2002). An additional example of formerly spinifex-textured xenolith, the first from Site 1188 (Snowcap) and the first from the upper cristobalite-bearing zone of alteration, has been revealed by postcruise studies. Furthermore, a pristine sample of the parent lithology has been found within a dredge haul (MD-138, Binatang-2000 Cruise of Franklin; 3°43.60'S, 151°40.35'E, 1688 meters below sea level) from the Satanic Mills hydrothermal field at PACMANUS, near ODP Site 1191. The purpose of this report is to document these discoveries and thereby to confirm and build on shipboard interpretations. To my knowledge, similar xenoliths have never before been found in modern island arc or backarc volcanic sequences. Spinifex textures are most common in Archean komatiites, some of which are bimodally associated with calc-alkaline felsic volcanic rocks.
Resumo:
Predicting the impacts of ocean acidification on coastal ecosystems requires an understanding of the effects on macroalgae and their grazers, as these underpin the ecology of rocky shores. Whilst calcified coralline algae (Rhodophyta) appear to be especially vulnerable to ocean acidification, there is a lack of information concerning calcified brown algae (Phaeophyta), which are not obligate calcifiers but are still important producers of calcium carbonate and organic matter in shallow coastal waters. Here, we compare ecological shifts in subtidal rocky shore systems along CO2 gradients created by volcanic seeps in the Mediterranean and Papua New Guinea, focussing on abundant macroalgae and grazing sea urchins. In both the temperate and tropical systems the abundances of grazing sea urchins declined dramatically along CO2 gradients. Temperate and tropical species of the calcifying macroalgal genus Padina (Dictyoaceae, Phaeophyta) showed reductions in CaCO3 content with CO2 enrichment. In contrast to other studies of calcified macroalgae, however, we observed an increase in the abundance of Padina spp. in acidified conditions. Reduced sea urchin grazing pressure and significant increases in photosynthetic rates may explain the unexpected success of decalcified Padina spp. at elevated levels of CO2. This is the first study to provide a comparison of ecological changes along CO2 gradients between temperate and tropical rocky shores. The similarities we found in the responses of Padina spp. and sea urchin abundance at several vent systems increases confidence in predictions of the ecological impacts of ocean acidification over a large geographical range.