988 resultados para Palmetto Sites Program


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is a synthesis of paleomagnetic and mineral magnetic results for Sites 819 through 823 of Ocean Drilling Program (ODP) Leg 133, which lie on a transect from the outer edge of the Great Barrier Reef (GBR) down the continental slope to the bottom of the Queensland Trough. Because of viscous remagnetization and pervasive overprinting, few reversal boundaries can be identified in these extremely high-resolution Quaternary sequences. Some of the magnetic instability, and the differences in the quality of the paleomagnetic signal among sites, can be explained in terms of the dissolution of primary iron oxides in the high near-surface geochemical gradients. Well-defined changes in magnetic properties, notably susceptibility, reflect responses to glacio-eustatic sea-level fluctuations and changes in slope sedimentation processes resulting from formation of the GBR. Susceptibility can be used to correlate between adjacent holes at a given site to an accuracy of about 20 cm. Among-site correlation of susceptibility is also possible for certain parts of the sequences and permits (tentative) extension of the reversal chronology. The reversal boundaries that can be identified are generally compatible with the calcareous nannofossil biostratigraphy and demonstrate a high level of biostratigraphic consistency among sites. A revised chronology based on an optimum match with the susceptibility stratigraphy is presented. Throughout most of the sequences there is a strong inverse correlation both between magnetic susceptibility and calcium carbonate content, and between susceptibility and d18O. In the upper, post-GBR, sections a more complicated type of magnetic response occurs during glacial maxima and subsequent transgressions, resulting in a positive correlation between susceptibility and d18O. Prior to and during formation of the outer-reef barrier, the sediments have relatively uniform magnetic properties showing multidomain behavior and displaying cyclic variations in susceptibility related to sea-level change. The susceptibility oscillations are controlled more by carbonate dilution than by variation in terrigenous influx. Establishment of the outer reef between 1.01 and 0.76 Ma restricted the supply of sediment to the slope, causing a four-fold reduction in sedimentation rates and a transition from prograding to aggrading seismic geometries (see other chapters in this volume). The Brunhes/Matuyama boundary and the end of the transition period mark a change to lower and more subdued susceptibility oscillations with higher carbonate contents. The major change in magnetic properties comes at about 0.4 Ma in the aggrading sequence, which contains prominent sharp susceptibility peaks associated with glacial cycles, with distinctive single-domain magnetite and mixed single-domain/superparamagnetic characteristics. Bacterial magnetite has been found in the sediments, particularly where there are high susceptibility peaks, but its importance has not yet been assessed. A possible explanation for the characteristic pattern of magnetic properties in the post-GBR glacial cycles can be found in terms of fluvio-deltaic processes and inter-reefal lagoonal reservoirs that develop when the shelf becomes exposed at low sea-level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 164, gas hydrates were recovered in the Blake Ridge where the top of the gas hydrate zone lies at about 200 meters below seafloor (mbsf) and the bottom-simulating reflector (BSR) is located at about 450 mbsf. There is no sedimentological discontinuity crossing the BSR. The BSR is disrupted by the salt piercement of the Cape Fear Diapir. The authigenic carbonates (dolomite and siderite) are always present in small amounts (a few weight percent) in the sediments; they are also concentrated in millimeter- to centimeter-sized nodules and layers composed of dolomite above the top of the gas hydrate reservoir, and of siderite below the BSR. In the Blake Ridge, the dolomite/siderite boundary is located near 140 mbsf. The distribution with depth of the d18O values of dolomite and siderite shows a sharp decrease from high values (maximum 7.5 per mil) in the topmost 50 m, to very low values (minimum -2.7 per mil) at 140 mbsf, and at greater depth increase to positive values within the range of 1.8 per mil to 5.0 per mil. The d13C distribution is marked by the rapid increase with greater depth from low values (-31.3 per mil to -11.4 per mil) near 50 mbsf to positive values at 110 mbsf, which remain in the range of 1.7 to 5.4 down to 700 mbsf. Diagenetic carbonates were precipitated in pore waters in which d18O and d13C values were highly modified by strong fractionation effects, both in the water and in the CO2-CH4 systems associated with the formation and dissociation of gas hydrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple copies of Cretaceous black shales extending from the early Cenomanian to the end of the Santonian were recovered at five sites on Demerara Rise during Leg 207 of the Ocean Drilling Program. These sediments are primarily composed of laminated organic-rich claystones interbedded with coarser, lightly laminated foraminferal-bearing packstones and wackestones. The black shales represent the local expression of widespread organic-rich sedimentation in the Atlantic during the mid-Cretaceous. However, incomplete recovery prevented construction of continuous composite sections, resulting in uncertainties concerning the correct stratigraphic placement of individual cores. By combining high-resolution measurements of bulk density collected shipboard on the multisensor track with continuous downhole measurements of formation resistivity using the Formation MicroScanner, an equivalent logging depth scale was constructed for black shales recovered from Sites 1258, 1260, and 1261. The integrated depths approach centimeter-scale resolution and are supported by comparisons of coarser resolution natural gamma ray emissions collected on cores and through downhole logging operations. The new depths highlight the extent of both intra- and intercore gaps and provide an opportunity to further constrain temporal and spatial paleoceanographic changes captured in proxy records from these sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotope analyses of well-preserved foraminifera from Blake Nose (30°N paleolatitude, North Atlantic) and globally distributed deep-sea sites provide a long-term paleotemperature record for the late Albian-Maastrichtian interval that is difficult to reconcile with the existence of significant Cretaceous ice sheets. Given reasonable assumptions about the isotopic composition of Cretaceous seawater, our results suggest that middle bathyal water temperatures at Blake Nose increased from ~12°C in the late Albian through middle Cenomanian to a maximum of 20°C during the latest Cenomanian and earliest Turonian. Bottom waters were again ~12°C during the middle Campanian and cooled to a minimum of 9°C during the Maastrichtian. Correlative middle bathyal foraminifera from other ocean basins yield paleotemperature estimates that are very similar to those from Blake Nose. Comparison of global bottom-water temperatures and latitudinal thermal gradients suggests that global climate changed from a warm greenhouse state during the late Albian through late Cenomanian to a hot greenhouse phase during the latest Cenomanian through early Campanian, then to cool greenhouse conditions during the mid-Campanian through Maastrichtian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was designed to check the assumption of the grain-size control on a gas hydrate presence in the Blake Ridge sediments; the assumption had originated from the data gained at Deep Sea Drilling Project (DSDP) Site 533. Granulometric analysis (the combined pipette-sieve method) of the 345 sediment samples obtained after pore-water squeezing from Ocean Drilling Program (ODP) Sites 994, 995, and 997 has provided support for this assumption. The zone of negative anomalies of pore-water chlorinity, which is generally recognized to be gas hydrate bearing, is confined, as a whole, to the interval of comparatively coarse-grained sediments in each of the three site columns because content of the fine fractions <0.05, <0.01, <0.005, and <0.001 mm is lower there (although the character of this control changes from site to site). The individual chlorinity anomalies also coincide, for the most part, with relatively coarse-grained sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (<5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at <2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Planktonic foraminifers from Ocean Drilling Program Leg 182, Holes 1126B and 1126C, 1128B and 1128C, 1130A and 1130B, 1132B, and 1134A and 1134B confirm the neritic record that during the early Miocene the Great Australian Bight region was in a cool-temperate regime with abundant Globoturborotalita woodi. Warm marine environments started to develop in the later part of the early Miocene, and the region became warm temperate to subtropical in the early middle Miocene with abundant Globigerinoides, Orbulina, and Globorotalia, corresponding to global warming at the Miocene climatic optimum. Fluctuations between cool- and warm-temperate conditions prevailed during the late Miocene, as indicated by abundant Globoconella conoidea and Menardella spp. A major change in planktonic foraminiferal assemblages close to the Miocene/Pliocene boundary not only drove many Miocene species into extinction but also brought about such new species as Globorotalia crassaformis and Globoconella puncticulata. Warm-temperate environments continued into the early and mid-Pliocene before being replaced by cooler conditions, supporting numerous Globoconella inflata and Globigerina quinqueloba. Based on data from this study and published results from the Australia-New Zealand region, we established a local planktonic foraminifer zonation scheme for separating the southern Australian Neogene (SAN) into Zones SAN1 to SAN19 characterizing the Miocene and Zones SAN20 to SAN25 characterizing the Pliocene. The Neogene sections from the Great Australian Bight are bounded by hiatuses of ~0.5 to >3 m.y. in duration, although poor core recovery in some holes obscured a proper biostratigraphic resolution. A total of 15 hiatuses, numbered 1 to 15, were identified as synchronous events from the base of the Miocene to the lower part of the Pleistocene. We believe that these are local manifestations of major third-order boundaries at about (1) 23.8, (2) 22.3, (3) 20.5, (4) 18.7, (5) 16.4, (6) 14.8, (7) 13.5, (8) 11.5, (9) 9.3, (10) 7.0, (11) 6.0, (12) 4.5, (13) 3.5, (14) 2.5, and (15) 1.5 Ma, respectively. This hiatus-bounded Neogene succession samples regional transgressions and stages of southern Australia and reveals its stepwise evolutionary history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shatsky Rise, a medium-sized large igneous province in the west Central Pacific Ocean, has three main topographic highs that preserve a thick sedimentary record from Cretaceous through Cenozoic. During Ocean Drilling Program (ODP) Leg 198 to Shatsky Rise, a total of ~768 m of late Miocene-Holocene sediments was recovered from six sites. Sites 1207 and 1208 were drilled on the Northern and Central Highs, respectively, and yielded expanded late Miocene-Holocene sequences. Sites 1209, 1210, 1211, and 1212 were drilled on the Southern High and yielded shorter sequences of similar age. Clearly interpretable magnetic stratigraphies were obtained from all sites using the shipboard pass-through magnetometer. These results were augmented using discrete sample cubes (7 cm**3) collected shipboard and measured postcruise. Miocene age sediments are separated by a hiatus from Oligocene, Eocene, and Cretaceous age sediments beneath. An astrochronological age model was developed for the six sites based on cycles observed in reflectance data, measured shipboard. This age model is in good agreement with published astrochronological polarity chron ages in the 1 to 6 Ma interval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first experimentally determined temperature dependent oxygen-18 fractionation factor between dolomite and water at low temperatures [Vasconcelos et al. 1995 doi:10.1130/G20992.1] allows now the precise calculation of temperatures during early diagenetic dolomite precipitation. We use d18O values of early diagenetic dolomite beds sampled during ODP Legs 112 and 201 on the Peru continental margin (Sites 1227, 1228 and 1229) [Meister et al. 2007, doi:10.1111/j.1365-3091.2007.00870.x] to calculate paleo-porewater temperatures at the time of dolomite precipitation. We assumed unaltered seawater d18O values in the porewater, which is supported by d18O values of the modern porewater presented in this study. The dolomite layers in the Pleistocene part of the sedimentary columns showed oxygen isotope temperatures up to 5 °C lower than today. Since Sites 1228 and 1229 are located at 150 and 250 m below sealevel, respectively, their paleo-porewater temperatures would be influenced by considerably colder surface water during glacial sealevel lowstands. Thus, Pleistocene dolomite layers in the Peru Continental margin probably formed during glacial times. This finding is consistent with a model for dolomite precipitation in the Peru Margin recently discussed by Meister et al. [Meister et al. 2007, doi:10.1111/j.1365-3091.2007.00870.x], where dolomite forms episodically at the sulphate methane interface. It was shown that the sulphate methane interface migrates upwards and downwards within the sedimentary column, but dolomite layers may only form when the sulphate-methane interface stays at a fixed depth for a sufficient amount of time. We hypothesize that the sulphate-methane interface persists within TOC-rich interglacial sediments, while this zone is buried by TOC-poor sedimentation during glacial times. Thus, the presented oxygen isotope data provide additional information on the timing of early diagenetic dolomite formation and a possible link between episodicity in dolomite formation and sealevel variations. A similar link between early diagenesis and oceanography may also explain spacing of dolomite layers in a Milankovitch type pattern observed in the geological record, such as in the Miocene Monterey Formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, the only Southern Hemisphere eolian grain-size record constructed for the early Paleogene comes from Deep Sea Drilling Project Site 215. Ten early Paleogene sediment samples from Site 215 were collected and processed to show that the existing eolian grain-size record at this site can be reproduced. Five samples each from Ocean Drilling Program Sites 1263 and 1267 were similarly examined to test the possibility of generating new Southern Hemisphere eolian grain-size records for the early Paleogene. Our results indicate that an eolian grain-size signal can be constructed at Walvis Ridge, although the record will be complicated by hemipelagic terrigenous inputs. Further, we assert that a record generated at a site located on the deep flanks of Walvis Ridge is particularly susceptible to hemipelagic influence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 123, two sites were drilled in the deep Indian Ocean. Physical properties were measured in soft Quaternary and Lower Cretaceous sediments to relatively fresh, glass-bearing pillow lavas and massive basalts. Porosities ranged from 89% near the seafloor to 1.6% for the dense basalts. This self-consistent set of measurements permitted some descriptive models of physical properties to be more rigorously tested than before. Predictive relationships between porosity and compressional-wave velocity have generally been based upon the Wyllie time average equation. However, this equation does not adequately describe the actual relationship between these two parameters, and many have attempted to improve it. In most cases, models were derived by testing them against a set of data representing a relatively narrow range of porosity values. Similarly, the use of the Wyllie equation has often been justified by a pseudolinear fit to the data over a narrow range of porosity values. The limitations of the Wyllie relationship have been re-emphasized here. A semi-empirical acoustic impedance equation is developed that provides a more accurate porosity-velocity transform, using realistic material parameters, than has hitherto been possible. A closer correlation can be achieved with this semi-empirical relationship than with more theoretically based equations. In addition, a satisfactory empirical equation can be used to describe the relationship between thermal conductivity and porosity. If enough is known about core sample lithologies to provide estimates of the matrix and pore water parameters, then these predictive equations enable one to describe completely the behavior of a saturated rock core in terms of compressional-wave velocity, thermal conductivity, porosity, and bulk density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The geometry of the Tonga Arc implies that it has rotated approximately 17° clockwise away from the Lau Ridge as the Lau Basin formed in between. Questions have arisen about the timing of the opening, whether the arc behaved rigidly, and whether the opening occurred instead from motion of the Lau Ridge, the remanent arc. We undertook to address these questions by taking paleomagnetic samples from sediment cores drilled on the Tonga Arc at Sites 840 and 841, orienting the samples in azimuth, and comparing the paleodeclinations to expected directions. Advanced hydraulic piston corer (APC) cores from Holes 840C and 841A were oriented during drilling with a tool based on a magnetic compass and attached to the core barrel. Samples from Hole 841B were drilled with a rotary core barrel (RCB) and therefore are azimuthally unoriented. They were oriented by identifying faults and dipping beds in the core and aligning them with the same features in the Formation MicroScanner (FMS) wireline logs, which were themselves oriented with a three-axis magnetometer in the FMS tool. The best results came from the APC cores, which yielded a mean pole at -69.0°S, 112.2°E for an age of 4 Ma. This pole implies a declination anomaly of 20.8° ± 12.6° (95% confidence limit), which appears to have occurred by tectonic rotation of the Tonga Arc. This value is almost exactly that expected from the geometry of the arc and implies that it did indeed rotate clockwise as a rigid body. The large uncertainty in azimuth results from core orientation errors, which have an average standard deviation of 18.6°. The youngest cores used to calculate the APC pole contain sediments deposited during Subchron 2A (2.48-3.40 Ma), and their declinations are indistinguishable from the others. This observation suggests that most of the rotation occurred after their deposition; this conclusion must be treated with caution, however, because of the large azimuthal orientation errors. Poles from late and early Miocene sediments of Hole 841B are more difficult to interpret. Samples from this hole are mostly normal in polarity, fail a reversal test, and yield poles that suggest that the normal-polarity directions may be a recent overprint. Late Miocene reversed-polarity samples may be unaffected by this overprint; if so, they imply a declination anomaly of 51.1° ± 11.5°. This observation may indicate that, for older sediments, Tonga forearc rotations are larger than expected.