893 resultados para Pacific Engineering and Production Company.
Resumo:
Bacterioplankton in the photic layer of the Sodruzhestvo Sea area and adjoining waters consists in summer primarily of cocci, with fractions smaller than 2 ?m predominating. The average abundance and biomass of microorganisms are 427 thousand cells/ml and 438 mg C/m**2, with ranges of 150-1770 thousand cells/ml and 221-1146 mg C/m**2. The average daily production and bacterial destruction increase from 49 and 104 mg C/m**2 at the beginning of the growth period to 85 and 180 mg C/m**2 in the middle of the period and remain at this level till the end. Despite low rate of increase (daily P/B coefficient averages 0.12), because of its high abundance bacterioplankton in Antarctic waters plays a major role in destruction of organic matter, accounting for 60-85% of energy consumed by heterotrophs.
Resumo:
The surf clams Mesodesma mactroides Reeve, 1854 and Donax hanleyanus Philippi, 1847 are the two dominating species in macrobenthic communities of sandy beaches off northern Argentina, with the latter now surpassing M. mactroides populations in abundance and biomass. Before stock decimation caused by exploitation (during the 1940s and 1950s) and mass mortality events (1995, 1999 and 2007) M. mactroides was the prominent primary consumer in the intertidal ecosystem and an important economic resource in Argentina. Since D. hanleyanus was not commercially fished and not affected by mass mortality events, it took over as the dominant species, but did never reach the former abundance of M. mactroides. Currently abundance and biomass of both surf clams are a multiple smaller than those of forty years ago, indicating the conservation status of D. hanleyanus and M. mactroides as endangered. Therefore the aim of this study is to analyse the population dynamics (population structure, growth and reproductive biology) of D. hanleyanus and M. mactroides, and to compare the results with historical data in order to detect possible differences within surf clam populations forty years ago and at present.
Resumo:
The few existing studies on macrobenthic communities of the deep Arctic Ocean report low standing stocks, and confirm a gradient with declining biomass from the slopes down to the basins as commonly reported for deep-sea benthos. In this study we have further investigated the relationship of faunal abundance (N), biomass (B) as well as community production (P) with water depth, geographical latitude and sea ice concentration. The underlying dataset combines legacy data from the past 20 years, as well as recent field studies selected according to standardized quality control procedures. Community P/B and production were estimated using the multi-parameter ANN model developed by Brey (2012). We could confirm the previously described negative relationship of water depth and macrofauna standing stock in the Arctic deep-sea. Furthermore, the sea-ice cover increasing with high latitudes, correlated with decreasing abundances of down to < 200 individuals/m**2, biomasses of < 65 mg C/m**2 and P of < 75 mg C/m**2/y. Stations under influence of the seasonal ice zone (SIZ) showed much higher standing stock and P means between 400 - 1400 mg C/m**2/y; even at depths up to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic ocean, explaining both the low values in the ice-covered Arctic basins and the high values along the SIZ.