997 resultados para PROTONIC ACID DOPING
Resumo:
Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.
Resumo:
Sialic acids are key structural determinants and contribute to the functionality of a number of immune cell receptors. Previously, we demonstrated that differentiation of human dendritic cells (DCs) is accompanied by an increased expression of sialylated cell surface structures, putatively through the activity of the ST3Gal.I and ST6Gal.I sialyltransferases. Furthermore, DC endocytosis was reduced upon removal of the cell surface sialic acid residues by neuraminidase. In the present work, we evaluate the contribution of the sialic acid modifications in DC maturation. We demonstrate that neuraminidase-treated human DCs have increased expression of major histocompatibility complex (MHC) and costimulatory molecules, increased gene expression of specific cytokines and induce a higher proliferative response of T lymphocytes. Together, the data suggest that clearance of cell surface sialic acids contributes to the development of a T helper type 1 proinflammatory response. This postulate is supported by mouse models, where elevated MHC class II and increased maturation of specific DC subsets were observed in DCs harvested from ST3Gal.I(-/-) and ST6Gal.I(-/-) mice. Moreover, important qualitative differences, particularly in the extent of reduced endocytosis and in the peripheral distribution of DC subsets, existed between the ST3Gal.I(-/-) and ST6Gal.I(-/-) strains. Together, the data strongly suggest not only a role of cell surface sialic acid modifications in maturation and functionality of DCs, but also that the sialic acid linkages created by different sialyltransferases are functionally distinct. Consequently, with particular relevance to DC-based therapies, cell surface sialylation, mediated by individual sialyltransferases, can influence the immunogenicity of DCs upon antigen loading.
Resumo:
For the first time, a glassy carbon electrode (GCE) modified with novel N-doped carbon nanotubes (CNT-N) functionalized with MnFe2O4 nanoparticles (MnFe2O4@CNT-N) has been prepared and applied for the electrochemical determination of caffeine (CF), acetaminophen (AC) and ascorbic acid (AA). The electrochemical behaviour of CF, AC and AA on the bare GCE, CNT-N/GCE and MnFe2O4@CNT-N/GCE were carefully investigated using cyclic voltammetry (CV) and square-wave voltammetry (SWV). Compared to bare GCE and CNT-N modified electrode, the MnFe2O4@CNT-N modified electrode can remarkably improve the electrocatalytic activity towards the oxidation of CF, AC and AA with an increase in the anodic peak currents of 52%, 50% and 55%, respectively. Also, the SWV anodic peaks of these molecules could be distinguished from each other at the MnFe2O4@CNT-N modified electrode with enhanced oxidation currents. The linear response ranges for the square wave voltammetric determination of CF, AC and AA were 1.0 × 10−6 to 1.1 × 10−3 mol dm−3, 1.0 × 10−6 to 1.0 × 10−3 mol dm−3 and 2.0 × 10−6 to 1.0 × 10−4 mol dm−3 with detection limit (S/N = 3) of 0.83 × 10−6, 0.83 × 10−6 and 1.8 × 10−6 mol dm−3, respectively. The sensitivity values at the MnFe2O4@CNT-N/GCE for the individual determination of AC, AA and CF and in the presence of the other molecules showed that the quantification of AA and CF show no interferences from the other molecules; however, AA and CF interfered in the determination of AC, with the latter molecule showing the strongest interference. Nevertheless, the obtained results show that MnFe2O4@CNT-N composite material acted as an efficient electrochemical sensor towards the selected biomolecules.
Resumo:
According to the new KDIGO (Kidney Disease Improving Global Outcomes) guidelines, the term of renal osteodystrophy, should be used exclusively in reference to the invasive diagnosis of bone abnormalities. Due to the low sensitivity and specificity of biochemical serum markers of bone remodelling,the performance of bone biopsies is highly stimulated in dialysis patients and after kidney transplantation. The tartrate-resistant acid phosphatase (TRACP) is an iso-enzyme of the group of acid phosphatases, which is highly expressed by activated osteoclasts and macrophages. TRACP in osteoclasts is in intracytoplasmic vesicles that transport the products of bone matrix degradation. Being present in activated osteoclasts, the identification of this enzyme by histochemistry in undecalcified bone biopsies is an excellent method to quantify the resorption of bone. Since it is an enzymatic histochemical method for a thermolabile enzyme, the temperature at which it is performed is particularly relevant. This study aimed to determine the optimal temperature for identification of TRACP in activated osteoclasts in undecalcified bone biopsies embedded in methylmethacrylate. We selected 10 cases of undecalcified bone biopsies from hemodialysis patients with the diagnosis of secondary hyperparathyroidism. Sections of 5 μm were stained to identify TRACP at different incubation temperatures (37º, 45º, 60º, 70º and 80ºC) for 30 minutes. Activated osteoclasts stained red and trabecular bone (mineralized bone) was contrasted with toluidine blue. This approach also increased the visibility of the trabecular bone resorption areas (Howship lacunae). Unlike what is suggested in the literature and in several international protocols, we found that the best results were obtained with temperatures between 60ºC and 70ºC. For technical reasons and according to the results of the present study, we recommended that, for an incubation time of 30 minutes, the reaction should be carried out at 60ºC. As active osteoclasts are usually scarce in a bone section, the standardization of the histochemistry method is of great relevance, to optimize the identification of these cells and increase the accuracy of the histomosphometric results. Our results, allowing an increase in osteoclasts contrast, also support the use of semi-automatic histomorphometric measurements.
Resumo:
New lipophilic hydroxycinnamic acid based derivatives were designed and synthesized and their antioxidant and neuroprotective activities evaluated. The chemical modification introduced in the cinnamic acid scaffold leads to compounds with amplified lipophilicity and in general with increased antioxidant activity when compared to natural models (caffeic and ferulic acids). The compounds did not display cytotoxicity and present a significant neuroprotective effect against 6-OH-DA induced damage to SH-SY5Y cells. Compound 6 stands out as an efficient radical scavenger and iron(II) chelator that ensures drug-like properties. Moreover, neuroprotection against oxidative damage was observed even at low concentration (1 μM). Therefore, compound 6 developed by a biology-oriented approach displays a combination of important features for a further optimization process that will generate a new effective antioxidant with therapeutic application for oxidative-stress-related events, namely neurodegenerative diseases.
Resumo:
Introduction: Paediatric patients who undergo posterior spinal fusion surgery to correct scoliosis often require multiple blood transfusions. Tranexamic acid is a synthetic antifibrinolytic drug that reduces transfusion requirements in scoliosis surgery (1),(2),(3). Methods: To evaluate the efficacy of prophylactic tranexamic acid (TA) (initial dose of 10mg/kg and infusion of 1mg.kg(-1).h(-1)) in reducing perioperative blood transfusion requirements, we reviewed patients files and compared the amount of blood lost and blood transfused in the perioperative period of 12 patients (54.5%) that received TA and 10 patients (45.5%) who did not received TA. T-Student test was applied. Results: The average difference of blood losses (2,67 +/- 6,06ml) and blood transfused (212,9 +/- 101,1ml) between the two groups was not statistically significant (p>0.05). No thrombotic complications were detected in either group. Discussion: Results of the current study showed that prophylactic low dose of TA did not have a significant effect in the management of intraoperative blood loss and transfusion requirements in children undergoing scoliosis surgery. It is important to emphasize that our study is retrospective and that the size of the sample is small. Further studies are needed to evaluate the efficacy and safety of TA on paediatric scoliosis surgery.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Rotavirus has been considered the main agent of infectious diarrhea especially among younger children. We addressed the prevalence of rotavirus-associated diarrhea and the diversity of circulating electropherotypes by immunochromatography and RNA electrophoresis. Stool samples were taken from 391 children (267 with diarrhea) from the lower socioeconomic stratum who sought treatment in the Hospital Infantil João Paulo II/Belo Horizonte, during 2005 and 2006. Rotavirus was detected in 79/20.2% of subjects, 64/24.0% with diarrhea and 15/12.1% with no diarrhea. The virus was strongly associated with diarrhea (p = 0.003). A total of 76/19.4% and 69/17.6% rotavirus-positive children were identified by immunochromatography and electrophoresis, respectively. Rotavirus-associated diarrhea was more frequently detected in dry months (p < 0.001) and almost exclusively in children aged up to three years. Long profile strains prevailed (54/78.3%) but a shift toward short electropherotype was identified. Despite the decrease seen in 2006, rotavirus infection is still very common in our area. Although viral RNA electrophoresis is useful as a typing method, it should not be used exclusively in the diagnosis of rotavirus infection. We confirmed a shift from long to short profile strains, as already described for other South American countries.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Normal human metabolism leads to the daily production of large amounts of volatile and non-volatile acids. The maintenance of the pH within physiological limits is a demanding task in which several mechanisms are involved. The most immediate answer comes from several physiological buffers that quickly neutralize pH deviations caused by the addition of strong acids or bases to the body. Bicarbonate/carbonic acid is the most important buffer pair of the extracellular milieu, but is chemically inefficient and depends on the continuous activity of the lung and kidney. Other physiological buffers have higher efficacy and are very important in the intracellular environment and renal tubules. The capacity of the various chemical buffers is kept by operating in an open system and by several controlling mechanisms. The lung is responsible for the elimination of the carbon dioxide (CO2) produced in the body. In metabolic disorders, respiratory adjustment of the elimination of CO2 prolongs the effect of the bicarbonate/carbonic acid buffer, but this process consumes bicarbonate. The kidney contributes to acid-base balance through several mechanisms: 1) controls the reabsorption of filtered bicarbonate; 2) regenerates bicarbonate consumed in buffer reactions; 3) eliminates non-volatile acids. Renal elimination of acid and bicarbonate regeneration is only possible due to the existence of several urinary buffers and to the ability of the kidneys to produce ammonia
Resumo:
Biochemistry, 2003, 42 (10), pp 3070–3080 DOI: 10.1021/bi026979d
Resumo:
BACKGROUND: High-grade gliomas are aggressive, incurable tumors characterized by extensive diffuse invasion of the normal brain parenchyma. Novel therapies at best prolong survival; their costs are formidable and benefit is marginal. Economic restrictions thus require knowledge of the cost-effectiveness of treatments. Here, we show the cost-effectiveness of enhanced resections in malignant glioma surgery using a well-characterized tool for intraoperative tumor visualization, 5-aminolevulinic acid (5-ALA). OBJECTIVE: To evaluate the cost-effectiveness of 5-ALA fluorescence-guided neurosurgery compared with white-light surgery in adult patients with newly diagnosed high-grade glioma, adopting the perspective of the Portuguese National Health Service. METHODS: We used a Markov model (cohort simulation). Transition probabilities were estimated with the use of data from 1 randomized clinical trial and 1 noninterventional prospective study. Utility values and resource use were obtained from published literature and expert opinion. Unit costs were taken from official Portuguese reimbursement lists (2012 values). The health outcomes considered were quality-adjusted life-years, lifeyears, and progression-free life-years. Extensive 1-way and probabilistic sensitivity analyses were performed. RESULTS: The incremental cost-effectiveness ratios are below €10 000 in all evaluated outcomes, being around €9100 per quality-adjusted life-year gained, €6700 per life-year gained, and €8800 per progression-free life-year gained. The probability of 5-ALA fluorescence-guided surgery cost-effectiveness at a threshold of €20000 is 96.0% for quality-adjusted life-year, 99.6% for life-year, and 98.8% for progression-free life-year. CONCLUSION: 5-ALA fluorescence-guided surgery appears to be cost-effective in newly diagnosed high-grade gliomas compared with white-light surgery. This example demonstrates cost-effectiveness analyses for malignant glioma surgery to be feasible on the basis of existing data.
Resumo:
Devido a crescente importância dos coccídios intestinais (Cryptosporidium, Isospora e Cyclospora) como parasitos oportunistas, é fundamental para os laboratórios diferenciar morfologicamente estes protozoários; a técnica de Ziehl-Neelsen modificada (ZNm) é amplamente utilizada para este fim; recentemente, foi proposto um novo procedimento, a coloração combinada do ácido tricrômico (Acid-Fast-Trichrome - AFT). O objetivo do presente estudo foi comparar os processos AFT e ZNm para a detecção destes coccídios em amostras fecais de pacientes portadores do vírus VIH. Foram selecionados dois grupos de indivíduos, para inclusão no estudo, segundo a presença (n=60) ou ausência de diarréia (n=60). As amostras de fezes foram coletadas em solução de formalina 10% e os esfregaços fecais preparados i) diretamente das fezes e ii) após concentração prévia a 500xg (10 minutos), foram submetidos aos diferentes processos de coloração. Considerando-se a positividade por técnica (AFT e ZNm), verificou-se a superioridade do procedimento de ZNm (n=19; 100% dos casos positivos) sobre o de AFT (n=8; 42,1%). Ambos possibilitaram a identificação dos 101 casos verdadeiramente negativos. Coccidiose intestinal foi mais frequente entre os pacientes que apresentaram diarréia (26,6%) em comparação à positividade observada entre os indíviduos assintomáticos (5%) sendo que C. cayetanensis não foi detectada em ambos os grupos. Foi de nosso interesse avaliar a aplicabilidade da técnica AFT para a coloração deste protozoário. Devido à sensibilidade e especificidade obtida neste estudo (100%), conclui-se que o método de ZNm continua sendo o mais indicado para o diagnóstico da criptosporidiose e isosporose, principalmente quando associado ao procedimento de centrífugo-concentração (500xg, 10 minutos). Embora a coloração AFT tenha baixo custo, faz-se necessário o seu aperfeiçoamento pois este procedimento permite o diagnóstico simultâneo dos coccídios intestinais (C. parvum, I. belli e C. cayetanensis) e dos microsporídios.