846 resultados para PREDATOR-PREY
Resumo:
Marine ecosystems and their associated populations are increasingly at risk from the cumulative impacts of many anthropogenic threats that increase the likelihood of species extinction and altered community dynamics. In response, marine reserves can be used to protect exploited species and conserve biodiversity. The increased abundance of predatory species in marine reserves may cause indirect effects along chains of multi-trophic interactions. These trophic cascades can arise through direct predation, density-mediated indirect interactions (DMIIs), or indirect behavioural effects, termed trait-mediated indirect interactions (TMIIs). The extent of algal cover and the abundance of 4 primary consumers were determined in Lough Hyne, which was designated Europe's first marine nature reserve in 1981. The primary consumers were the sea urchin Paracentrotus lividus, the topshell Gibbula cineraria, the oyster Anomia ephippium, and the scallop Chlamys varia. The abundances of 3 starfish species (Marthasterias glacialis, Asterias rubens, and Asterina gibbosa) were also determined, as were 2 potential crustacean predators, Necora puber and Carcinus maenas. These data were compared with historical data from a 1962 (prey) and a 1963 (predator) survey to determine the nature of community interactions over adjacent trophic levels. The present study reveals a breakdown in population structure of the 4 surveyed prey species. Marine reserve designation has led to an increase in predatory crabs and M. glacialis, a subsequent decrease in primary consumers, especially the herbivore P. lividus, and an increase in macroalgal cover which is indicative of a trophic cascade. The study shows that establishing a Marine Reserve does not guarantee that conservation benefits will be distributed equally.
Resumo:
1. Global declines in biodiversity have stimulated much research into the consequences of species loss for ecosystems and the goods and services they provide. Species at higher trophic levels are at greater risk of human-induced extinction yet remarkably little is known about the effects of consumer species loss across multiple trophic levels in natural complex ecosystems. Previous studies have been criticized for lacking experimental realism and appropriate temporal scale, running for short periods that are not sufficient to detect many of the mechanisms operating in the field.
2. We manipulated the presence of two predator species and two groups of their prey (primary consumers) and measured their independent and interactive effects on primary producers in a natural marine benthic system. The presence of predators and their prey was manipulated in the field for 14 months to distinguish clearly the direct and indirect effects of predators on primary producers and to identify mechanisms driving responses.
3. We found that the loss of either predator species had indirect negative effects on species diversity and total cover of primary producers. These cascading effects of predator species loss were mediated by the presence of intermediate consumers. Moreover, the presence of different intermediate consumers, irrespective of the presence or absence of their predators, determined primary producer assemblage structure. We identified direct negative effects of predators on their prey and several indirect effects of predators on primary producers but not all interactions could have been predicted based on trophic level.
4. Our findings demonstrate the importance of trophic cascade effects coupled with non-trophic interactions when predicting the effects of loss of predator species on primary producers and consequently for ecosystem functioning. There is a pressing need for improved understanding of the effects of loss of consumers, based on realistic scenarios of diversity loss, to test conceptual frameworks linking predator diversity to variation in ecosystem functioning and for the protection of biodiversity, ecosystem functioning and related services.
Resumo:
Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context-dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context-dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non-trophic interactions based on empirical evidence must be incorporated into food web-based ecological models to improve understanding of community responses to global change.
Resumo:
Studies of trait-mediated indirect interactions (TMIIs) typically focus on effects higher predators have on per capita consumption by intermediate consumers of a third, basal prey resource. TMIIs are usually evidenced by changes in feeding rates of intermediate consumers and/or differences in densities of this third species. However, understanding and predicting effects of TMIIs on population stability of such basal species requires examination of the type and magnitude of the functional responses exhibited towards them. Here, in a marine intertidal system consisting of a higher-order fish predator, the shanny Lipophrys pholis, an intermediate predator, the amphipod Echinogammarus marinus, and a basal prey resource, the isopod Jaera nordmanni, we detected TMIIs, demonstrating the importance of habitat complexity in such interactions, by deriving functional responses and exploring consequences for prey population stability. Echinogammarus marinus reacted to fish predator diet cues by reducing activity, a typical anti-predator response, but did not alter habitat use. Basal prey, Jaera nordmanni, did not respond to fish diet cues with respect to activity, distribution or aggregation behaviour. Echinogammarus marinus exhibited type II functional responses towards J. nordmanni in simple habitat, but type III functional responses in complex habitat. However, while predator cue decreased the magnitude of the type II functional response in simple habitat, it increased the magnitude of the type III functional response in complex habitat. These findings indicate that, in simple habitats, TMIIs may drive down consumption rates within type II responses, however, this interaction may remain de-stabilising for prey populations. Conversely, in complex habitats, TMIIs may strengthen regulatory influences of intermediate consumers on prey populations, whilst potentially maintaining prey population stability. We thus highlight that TMIIs can have unexpected and complex ramifications throughout communities, but can be unravelled by considering effects on intermediate predator functional response types and magnitudes.
Resumo:
A new model to explain animal spacing, based on a trade-off between foraging efficiency and predation risk, is derived from biological principles. The model is able to explain not only the general tendency for animal groups to form, but some of the attributes of real groups. These include the independence of mean animal spacing from group population, the observed variation of animal spacing with resource availability and also with the probability of predation, and the decline in group stability with group size. The appearance of "neutral zones" within which animals are not motivated to adjust their relative positions is also explained. The model assumes that animals try to minimize a cost potential combining the loss of intake rate due to foraging interference and the risk from exposure to predators. The cost potential describes a hypothetical field giving rise to apparent attractive and repulsive forces between animals. Biologically based functions are given for the decline in interference cost and increase in the cost of predation risk with increasing animal separation. Predation risk is calculated from the probabilities of predator attack and predator detection as they vary with distance. Using example functions for these probabilities and foraging interference, we calculate the minimum cost potential for regular lattice arrangements of animals before generalizing to finite-sized groups and random arrangements of animals, showing optimal geometries in each case and describing how potentials vary with animal spacing. (C) 1999 Academic Press.</p>
Resumo:
The bones (humerus and/or femur) of 229 birds of prey from 11 species were analyzed for Pb and As to evaluate their exposure to Pb shot. The species with the highest mean Pb levels were red kite (Milvus milvus) and Eurasian griffon (Gyps fulvus), and the species with the lowest levels were Eurasian buzzard (Buteo buteo) and booted eagle (Hieraaetus pennatus). Red kite also had the highest mean As level, an element present in small amounts in Pb shot. Elevated bone Pb concentrations (>10 microg/g dry weight) were found in 10 birds from six species. Clinical signs compatible with lethal Pb poisoning and/or excessive bone Pb concentrations (>20 microg/g) were observed in one Eurasian eagle-owl (Bubo bubo), one red kite, and one Eurasian griffon. Pb poisoning has been diagnosed in eight upland raptor species in Spain to date.
Resumo:
Arsenic (As) contamination of communal tubewells in Prey Vêng, Cambodia, has been observed since 2000. Many of these wells exceed the WHO As in drinking water standard of 10 µg/L by a factor of 100. The aim of this study was to assess how cooking water source impacts dietary As intake in a rural community in Prey Vêng. This aim was fulfilled by (1) using geostatistical analysis techniques to examine the extent of As contaminated groundwater in Prey Vêng and identify a suitable study site, (2) conducting an on-site study in two villages to measure As content in cooked rice prepared with water collected from tubewells and locally harvested rainwater, and (3) determining the dietary intake of As from consuming this rice. Geostatistical analysis indicated that high risk tubewells (>50 µg As/L) are concentrated along the Mekong River's east bank. Participants using high risk tubewells are consuming up to 24 times more inorganic As daily than recommended by the previous FAO/WHO provisional tolerable daily intake value (2.1 µg/kgBW/day). However, As content in rice cooked in rainwater was significantly reduced, therefore, it is considered to be a safer and more sustainable option for this region.
Resumo:
A size and trait-based marine community model was used to investigate interactions, with potential implications for yields, when a fishery targeting forage fish species (whose main adult diet is zooplankton) co-occurs with a fishery targeting larger-sized predator species. Predicted effects on the size structure of the fish community, growth and recruitment of fishes, and yield from the fisheries were used to identify management trade-offs among the different fisheries. Results showed that moderate fishing on forage fishes imposed only small effects on predator fisheries, whereas predator fisheries could enhance yield from forage fisheries under some circumstances.
Resumo:
The Eurasian otter (Lutra lutra L.) is a top predator in aquatic systems and plays an important role in ecosystem functioning. However, it has undergone dramatic declines throughout Europe as a result of environmental degradation. We examine the putative role of the otter as a bioindicator in Ireland which remains a stronghold for the species and affords a unique opportunity to examine variation in its ecological niche. We describe diet, using spraint contents, along rivers during 2010 and conduct a review and quantitative meta-analysis of the results of a further 21 studies. We aimed to assess variation in otter diet in relation to river productivity, a proxy for natural nutrification and anthropogenic eutrophication, and availability of salmonid prey (Salmo trutta and Salmo salar), to test the hypothesis that otter diet is related to environmental quality. Otter diet did not vary with levels of productivity or availability of salmonids whilst Compositional Analysis suggested there was no selection of salmonid over non-salmonid fish. There was a distinct niche separation between riverine and lacustrine systems, the latter being dominated by Atlantic eel (Anguilla anguilla). Otters are opportunistic and may take insects, freshwater mussels, birds, mammals and even fruit. Otters living along coasts have a greatest niche breath than those in freshwater systems which encompasses a wide variety of intertidal prey though pelagic fish are rarely taken. It is concluded that the ability of the otter to feed on a wide diversity of prey taxa and the strong influence of habitat type, renders it a poor bioindicator of environmental water quality. It seems likely that the plasticity of the habitat and dietary niche of otters, and the extent of suitable habitat, may have sustained populations in Ireland despite intensification of agriculture during the 20th century.
Resumo:
Invasion ecology urgently requires predictive methodologies that can forecast the ecological impacts of existing, emerging and potential invasive species. We argue that many ecologically damaging invaders are characterised by their more efficient use of resources. Consequently, comparison of the classical ‘functional response’ (relationship between resource use and availability) between invasive and trophically analogous native species may allow prediction of invader ecological impact. We review the utility of species trait comparisons and the history and context of the use of functional responses in invasion ecology, then present our framework for the use of comparative functional responses. We show that functional response analyses, by describing the resource use of species over a range of resource availabilities, avoids many pitfalls of ‘snapshot’ assessments of resource use. Our framework demonstrates how comparisons of invader and native functional responses, within and between Type II and III functional responses, allow testing of the likely population-level outcomes of invasions for affected species. Furthermore, we describe how recent studies support the predictive capacity of this method; for example, the invasive ‘bloody red shrimp’ Hemimysis anomala shows higher Type II functional responses than native mysids and this corroborates, and could have predicted, actual invader impacts in the field. The comparative functional response method can also be used to examine differences in the impact of two or more invaders, two or more populations of the same invader, and the abiotic (e.g. temperature) and biotic (e.g. parasitism) context-dependencies of invader impacts. Our framework may also address the previous lack of rigour in testing major hypotheses in invasion ecology, such as the ‘enemy release’ and ‘biotic resistance’ hypotheses, as our approach explicitly considers demographic consequences for impacted resources, such as native and invasive prey species. We also identify potential challenges in the application of comparative functional responses in invasion ecology. These include incorporation of numerical responses, multiple predator effects and trait-mediated indirect interactions, replacement versus non-replacement study designs and the inclusion of functional responses in risk assessment frameworks. In future, the generation of sufficient case studies for a meta-analysis could test the overall hypothesis that comparative functional responses can indeed predict invasive species impacts.
Resumo:
Natural ecosystems are increasingly exposed to multiple anthropogenic stressors, including land-use change, deforestation, agricultural intensification, and urbanisation, all of which have led to widespread habitat fragmentation, which is also likely to be amplified further by predicted climate change. The potential interactive effects of these different stressors cannot be determined by studying each in isolation, although such synergies have been largely ignored in ecological field studies to date. Here, we use a model system of naturally fragmented islands in a braided river network, which is exposed to periodic inundation, to investigate the interactive effects of habitat isolation and flood disturbance. Food web structure was similar across the islands during periods of hydrological stability, but several key properties were altered in the aftermath of flood disturbance, based on distance of the islands from the regional source pool of species: taxon richness and mean food chain length declined with habitat isolation after flooding, while the proportion of basal species increased. Greater species turnover through time reflected the slower process of re-colonisation on the more distant islands following disturbance. Increased variability of several food web properties over a 1-year period highlighted the reduced temporal stability of isolated habitat fragments. Many of these effects reflected the differential successes of predator and prey species at re-colonising the islands: even though larger, more mobile consumers may reach the more distant islands first, they cannot establish populations until the lower trophic levels have successfully reassembled. These results highlight the susceptibility of fragmented ecosystems to environmental perturbations. © 2013 Elsevier Ltd.
Resumo:
The ability to predict the likely ecological impacts of invasive species in fresh waters is a pressing research requirement. Whilst comparisons of species traits and considerations of invasion history have some efficacy in this respect, we require robust methods that can compare the effects of native and invasive species. Here, we utilise comparative functional responses and prey selectivity experiments to understand and predict the ecological impact of an invader as compared to a native. We compared the predatory functional responses of an emerging invasive species in Europe, the 'killer shrimp', Dikerogammarus villosus, and an analogous native species, Gammarus pulex, towards three representative prey species: Asellus aquaticus, Daphnia magna and Chironomus sp. Furthermore, as ecological impact may be greater for invasive species with more indiscriminate feeding habits, we compared the selectivity for the three prey types between the invasive and native species. In both the presence and absence of experimental habitats, large D. villosus, and those matched for body size with G. pulex, generally showed higher (Type II) functional responses than G. pulex, with the invasive species exhibiting higher maximum feeding rates. Further, D. villosus exhibited significantly more indiscriminate prey selection compared with G. pulex, a trait that became more evident as the invader increased in size. Differences in functional responses and prey selectivity were prey species specific, with higher to lower predicted impacts in the order A. aquaticus, D. magna and Chironomus sp. This is in accord with the impact of this invasive species on macroinvertebrates in the field. We thus provide understanding of the known ecological impact of D. villosus and discuss the utility of the phenomenological use of comparative functional responses and resource use as a tool through which the potential ecological impacts of invasive species may be identified. © 2013 John Wiley & Sons Ltd.
Resumo:
Biological invasions continue to exert pressure on ecosystems worldwide and we thus require methods that can help understand and predict the impacts of invasive species, on both native species and previously established invaders. Comparing laboratory derived functional responses among invasive and native predators has emerged as one such method, providing a robust proxy for field impacts. We used this method to examine the likely impacts of the Ponto–Caspian amphipod Dikerogammarus haemobaphes, known as the “demon shrimp”, a little investigated invader in European freshwaters that has recently established in the British Isles. We compared the functional responses on two prey species of D. haemobaphes with two other amphipod species: Dikerogammarus villosus, a congeneric invasive with well-documented impacts on macro-invertebrate communities and a native amphipod, Gammarus pulex. Prey species were native Chironomus sp. and the invasive Chelicorophium curvispinum, a tube-building amphipod also originating from the Ponto–Caspian region. D. villosus showed higher Type II functional responses towards both prey species than did D. haemobaphes and G. pulex, with the latter two predators exhibiting similar impacts on the native prey. However, D. haemobaphes had higher functional responses towards the invasive C. curvispinum than did G. pulex, both when prey individuals were tubeless and resident in their protective mud tubes. Thus, we demonstrate that functionally equivalent invasive congeners can show significantly different impacts on prey, regardless of shared evolutionary history. We also show that some predatory invaders can have impacts on native prey equivalent to native predator impacts, but that they can also exert significant impacts on previously introduced prey. We discuss the importance of invasion history and prey identity when attempting to understand and predict the impacts of new invaders.
Resumo:
Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the ‘enemy’ of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning.