923 resultados para PLANE-STRAIN COMPRESSION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bleaching of the n = 1 heavy-hole and light-hole exciton absorption has been studied at room temperature and zero bias in a strain-balanced InGaAs/InAsP multiple quantum well. Pump-probe spectroscopy was used to measure the decay of the light-hole absorption saturation, giving a hole lifetime of only 280 ps. As only 16 meV separates the light- and heavy-hole bands, the short escape time can be explained by thermalization between these bands followed by thermionic emission over the heavy-hole barrier. The saturation density was estimated to be 1 × 1016 cm-3; this is much lower than expected for tensile-strained wells where both heavy and light holes have large in-plane masses. © 1998 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compaction behaviour of powders with soft and hard components is of particular interest to the paint processing industry. Unfortunately, at the present time, very little is known about the internal mechanisms within such systems and therefore suitable tests are required to help in the interpretative process. The TRUBAL, Distinct Element Method (D.E.M.) program was the method of investigation used in this study. Steel (hard) and rubber (soft) particles were used in the randomly-generated, binary assemblies because they provided a sharp contrast in physical properties. For reasons of simplicity, isotropic compression of two-dimensional assemblies was also initially considered. The assemblies were first subject to quasi-static compaction, in order to define their behaviour under equilibrium conditions. The stress-strain behaviour of the assemblies under such conditions was found to be adequately described by a second-order polynomial expansion. The structural evolution of the simulation assemblies was also similar to that observed for real powder systems. Further simulation tests were carried out to investigate the effects of particle size on the compaction behaviour of the two-dimensional, binary assemblies. Later work focused on the quasi-static compaction behaviour of three-dimensional assemblies, because they represented more realistic particle systems. The compaction behaviour of the assemblies during the simulation experiments was considered in terms of percolation theory concepts, as well as more familiar macroscopic and microstructural parameters. Percolation theory, which is based on ideas from statistical physics, has been found to be useful in the interpretation of the mechanical behaviour of simple, elastic lattices. However, from the evidence of this study, percolation theory is also able to offer a useful insight into the compaction behaviour of more realistic particle assemblies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In biaxial compression tests, the stress calculations based on boundary information underestimate the principal stresses leading to a significant overestimation of the shear strength. In direct shear tests, the shear strain becomes highly concentrated in the mid-plane of the sample during the test. Although the stress distribution within the specimen is heterogeneous, the evolution of the stress ratio inside the shear band is similar to that inferred from the boundary force calculations. It is also demonstrated that the dilatancy in the shear band significantly exceeds that implied from the boundary displacements. In simple shear tests, the stresses acting on the wall boundaries do not reflect the internal state of stress but merely provide information about the average mobilised wall friction. It is demonstrated that the results are sensitive to the initial stress state defined by K0 = sh/sv. For all cases, non-coaxiality of the principal stress and strain-rate directions is examined and the corresponding flow rule is identified. Periodic cell simulations have been used to examine biaxial compression for a wide range of initial packing densities. Both constant volume and constant mean stress tests have been simulated. The characteristic behaviour at both the macroscopic and microscopic scales is determined by whether or not the system percolates (enduring connectivity is established in all directions). The transition from non-percolating to percolating systems is characterised by transitional behaviour of internal variables and corresponds to an elastic percolation threshold, which correlates well with the establishment of a mechanical coordination number of ca. 3.0. Strong correlations are found between macroscopic and internal variables at the critical state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research work described in this thesis is concerned with the development of glassfibre reinforced plastics for structural uses in Civil Engineering construction. The first stage was primarily concerned with the design of GRP lamintes with structura1 properties and method of manufacture suitable for use with relatively large structural components. A cold setting, pressure moulding technique was developed which proved to be efficient in reducing the void content in the composite and minimising the exothermic effect due to curing. The effect of fibre content and fibre arrangement on strength and stiffness of the cornposite was studied and the maximum amount of' fibre content that could be reached by the adopted type of moulding technique was determined. The second stage of the project was concerned with the introduction of steel-wire "sheets" into the GRP cornposites, to take advantage of the high modulus of steel wire to improve the GRP stiffness and to reduce deformation. The experimental observations agreed reasonably well with theoretical predictions in both first and second stages of the work. The third stage was concerned with studying the stability of GRP flat rectangular plates subjected to uniaxial compression or pure shear, to simulate compression flanges or shear webs respectively. The investigation was concentrated on the effect of fibre arrangement in the plate on buckling load. The effect of the introduction of steel-wire sheets on the plate stability in compression was also investigated. The boundary conditions were chosen to be close to those usually assumed in built-up box-sections for both compression flanges and webs. The orthotropic plate and the mid-plane symmetric were used successfully in predicting the buckling load theoretically. In determining the buckling load experimentally, two methods were used. The Southwell plot method and electrical strain gauge method. The latter proved to be more reliable in predicting the buckling load than the former, especially for plates under uniaxial compression. Sample design charts for GRP plates that yield and buckle simultaneously under compression are also presented in the thesis. The final stage of the work dealt with the design and test of GRP beams. The investigation began by finding the optimum cross-section for a GRP beam. The cross-section which was developed was a thin walled corrugated section which showed higher stiffness than other cross-sections for the same cross-sectional area (i.e. box, I, and rectangular sections). A cold setting, hand layings technique was used in manufacturing these beams wbich were of nine types depending on the type of glass reinforcement employed and the arrangement of layers in the beam. The simple bending theory was used in the beam design and proved to be satisfactory in predicting the stresses and deflections. A factor of safety of 4 was chosen for design purposes and considered to be suitable for long term use under static load. Because of its relatively low modulus, GRP beams allowable deflection was limited to 1/120th of the span which was found to be adequate for design purposes. A general discussion of the behaviour of GRP composites and their place relative to the more conventional structural material was also presented in the thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication of in-fibre Bragg gratings, and the application of arrays of such gratings as strain sensors and as true time delay elements for the control of phased array antennas is reported. Chirped period Bragg gratings were produced using the fibre deformation fabrication technique, with chirps of between 2.9nm and 17.3nm achieved. Arrays of 5mm and 2mm long uniform period Bragg gratings were fabricated using the inscription method, for use as true time delay elements,dissimilar wavefronts and their spectral characteristics recorded. The uniform period grating arrays were used to create minimum time delays of 9.09ps, 19.02ps and 31ps; making them suitable for controlling phased array antennas operating at RF frequencies of up to 3GHz, with 10° phase resolution. Four 4mm long chirped gratings were produced using the dissimilar wavefronts fabrication method, having chirps of 7nm, 12nm, 20nm and 30nm, and were used to create time delays of between 0.3ps and 59ps. Hence they are suitable for controlling phased array antennas at RF frequencies of up to 48GHz. The application of in fibre Bragg gratings as strain sensors within smart structure materials was investigated, with their sensitivity to applied strain and compression measured for both embedded and surface mounted uniform period and fibre Fabry-Perot filter gratings. A fibre Bragg grating sensor demultiplexing scheme based on a liquid crystal filled Fabry-Perot etalon tuneable transmission filter was proposed, successfully constructed and fully characterised. Three characteristics of the LCFP etalon were found to pose operational limitations to its application in a Bragg grating sensor system; most significantly, the resonance peak wavelength was highly (-2,77nm/°C) temperature dependent. Several methods for minimising this temperature sensitivity were investigated, but enjoyed only limited success. It was therefore concluded that this type (E7 filled) of LCFP etalon is unsuitable for use as a Bragg grating sensor demultiplexing element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcompression specimens, 10–15 µm in diameter by 20–30 µm in height, were produced from individual parent grains in a polycrystalline U–13 at.%Nb shape-memory alloy using the focused ion beam technique. The specimens were tested in a nanoindentation instrument with a flat diamond tip to investigate stress–strain behavior as a function of crystallographic orientation. The results are in qualitative agreement with a single-crystal accommodation strain (Bain strain) model of the shape-memory effect for this alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multicore fibre (MCF) sensor to measure the radial deformation of a compliant cylinder under compression is presented. The sensor is connectorised and need not be permanently bonded to the test object. A differential measurement technique using FBGs written into the MCF makes the sensor temperature insensitive. FBG measurement of axial strain of a cylinder under compression is also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multicore fibre (MCF) sensor to measure the radial deformation of a compliant cylinder under compression is presented. The sensor is connectorised and need not be permanently bonded to the test object. A differential measurement technique using FBGs written into the MCF makes the sensor temperature insensitive. FBG measurement of axial strain of a cylinder under compression is also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a comprehensive study based on first-principles calculations about the interplay of four important ingredients on the electronic structure of graphene: defects + magnetism + ripples + strain. So far they have not been taken into account simultaneously in a set of ab initio calculations. Furthermore, we focus on the strain dependence of the properties of carbon monovacancies, with special attention to magnetic spin moments. We demonstrated that such defects show a very rich structural and spin phase-diagram with many spin solutions as function of strain. At zero strain the vacancy shows a spin moment of 1.5 Bohrs that increases up to 2 Bohrs with stretching. Changes are more dramatic under compression: the vacancy becomes non-magnetic under a compression larger than 2%. This transition is linked to the structural modifications associated with the formation of ripples in the graphene layer. Our results suggest that such interplay could have important implications for the design of future spintronics devices based on graphene derivatives, as for example a spin-strain switch based on vacancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La vallée du fleuve Saint-Laurent, dans l’est du Canada, est l’une des régions sismiques les plus actives dans l’est de l’Amérique du Nord et est caractérisée par de nombreux tremblements de terre intraplaques. Après la rotation rigide de la plaque tectonique, l’ajustement isostatique glaciaire est de loin la plus grande source de signal géophysique dans l’est du Canada. Les déformations et les vitesses de déformation de la croûte terrestre de cette région ont été étudiées en utilisant plus de 14 ans d’observations (9 ans en moyenne) de 112 stations GPS fonctionnant en continu. Le champ de vitesse a été obtenu à partir de séries temporelles de coordonnées GPS quotidiennes nettoyées en appliquant un modèle combiné utilisant une pondération par moindres carrés. Les vitesses ont été estimées avec des modèles de bruit qui incluent les corrélations temporelles des séries temporelles des coordonnées tridimensionnelles. Le champ de vitesse horizontale montre la rotation antihoraire de la plaque nord-américaine avec une vitesse moyenne de 16,8±0,7 mm/an dans un modèle sans rotation nette (no-net-rotation) par rapport à l’ITRF2008. Le champ de vitesse verticale confirme un soulèvement dû à l’ajustement isostatique glaciaire partout dans l’est du Canada avec un taux maximal de 13,7±1,2 mm/an et un affaissement vers le sud, principalement au nord des États-Unis, avec un taux typique de −1 à −2 mm/an et un taux minimum de −2,7±1,4 mm/an. Le comportement du bruit des séries temporelles des coordonnées GPS tridimensionnelles a été analysé en utilisant une analyse spectrale et la méthode du maximum de vraisemblance pour tester cinq modèles de bruit: loi de puissance; bruit blanc; bruit blanc et bruit de scintillation; bruit blanc et marche aléatoire; bruit blanc, bruit de scintillation et marche aléatoire. Les résultats montrent que la combinaison bruit blanc et bruit de scintillation est le meilleur modèle pour décrire la partie stochastique des séries temporelles. Les amplitudes de tous les modèles de bruit sont plus faibles dans la direction nord et plus grandes dans la direction verticale. Les amplitudes du bruit blanc sont à peu près égales à travers la zone d’étude et sont donc surpassées, dans toutes les directions, par le bruit de scintillation et de marche aléatoire. Le modèle de bruit de scintillation augmente l’incertitude des vitesses estimées par un facteur de 5 à 38 par rapport au modèle de bruit blanc. Les vitesses estimées de tous les modèles de bruit sont statistiquement cohérentes. Les paramètres estimés du pôle eulérien de rotation pour cette région sont légèrement, mais significativement, différents de la rotation globale de la plaque nord-américaine. Cette différence reflète potentiellement les contraintes locales dans cette région sismique et les contraintes causées par la différence des vitesses intraplaques entre les deux rives du fleuve Saint-Laurent. La déformation de la croûte terrestre de la région a été étudiée en utilisant la méthode de collocation par moindres carrés. Les vitesses horizontales interpolées montrent un mouvement cohérent spatialement: soit un mouvement radial vers l’extérieur pour les centres de soulèvement maximal au nord et un mouvement radial vers l’intérieur pour les centres d’affaissement maximal au sud, avec une vitesse typique de 1 à 1,6±0,4 mm/an. Cependant, ce modèle devient plus complexe près des marges des anciennes zones glaciaires. Basées selon leurs directions, les vitesses horizontales intraplaques peuvent être divisées en trois zones distinctes. Cela confirme les conclusions d’autres chercheurs sur l’existence de trois dômes de glace dans la région d’étude avant le dernier maximum glaciaire. Une corrélation spatiale est observée entre les zones de vitesses horizontales intraplaques de magnitude plus élevée et les zones sismiques le long du fleuve Saint-Laurent. Les vitesses verticales ont ensuite été interpolées pour modéliser la déformation verticale. Le modèle montre un taux de soulèvement maximal de 15,6 mm/an au sud-est de la baie d’Hudson et un taux d’affaissement typique de 1 à 2 mm/an au sud, principalement dans le nord des États-Unis. Le long du fleuve Saint-Laurent, les mouvements horizontaux et verticaux sont cohérents spatialement. Il y a un déplacement vers le sud-est d’une magnitude d’environ 1,3 mm/an et un soulèvement moyen de 3,1 mm/an par rapport à la plaque l’Amérique du Nord. Le taux de déformation verticale est d’environ 2,4 fois plus grand que le taux de déformation horizontale intraplaque. Les résultats de l’analyse de déformation montrent l’état actuel de déformation dans l’est du Canada sous la forme d’une expansion dans la partie nord (la zone se soulève) et d’une compression dans la partie sud (la zone s’affaisse). Les taux de rotation sont en moyenne de 0,011°/Ma. Nous avons observé une compression NNO-SSE avec un taux de 3.6 à 8.1 nstrain/an dans la zone sismique du Bas-Saint-Laurent. Dans la zone sismique de Charlevoix, une expansion avec un taux de 3,0 à 7,1 nstrain/an est orientée ENE-OSO. Dans la zone sismique de l’Ouest du Québec, la déformation a un mécanisme de cisaillement avec un taux de compression de 1,0 à 5,1 nstrain/an et un taux d’expansion de 1.6 à 4.1 nstrain/an. Ces mesures sont conformes, au premier ordre, avec les modèles d’ajustement isostatique glaciaire et avec la contrainte de compression horizontale maximale du projet World Stress Map, obtenue à partir de la théorie des mécanismes focaux (focal mechanism method).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Behavior of granular material subjected to repeated load triaxial compression tests is characterized by a model based on rate process theory. Starting with the Arrhenius equation from chemical kinetics, the relationship of temperature, shear stress, normal stress and volume change to deformation rate is developed. The proposed model equation includes these factors as a product of exponential terms. An empirical relationship between deformation and the cube root of the number of stress applications at constant temperature and normal stress is combined with the rate equation to yield an integrated relationship of temperature, deviator stress, confining pressure and number of deviator stress applications to axial strain. The experimental program consists of 64 repeated load triaxial compression tests, 52 on untreated crushed stone and 12 on the same crushed stone material treated with 4% asphalt cement. Results were analyzed with multiple linear regression techniques and show substantial agreement with the model equations. Experimental results fit the rate equation somewhat better than the integrated equation when all variable quantities are considered. The coefficient of shear temperature gives the activation enthalpy, which is about 4.7 kilocalories/mole for untreated material and 39.4 kilocalories/mole for asphalt-treated material. This indicates the activation enthalpy is about that of the pore fluid. The proportionality coefficient of deviator stress may be used to measure flow unit volume. The volumes thus determined for untreated and asphalt-treated material are not substantially different. This may be coincidental since comparison with flow unit volumes reported by others indicates flow unit volume is related to gradation of untreated material. The flow unit volume of asphalt-treated material may relate to asphalt cement content. The proposed model equations provide a more rational basis for further studies of factors affecting deformation of granular materials under stress similar to that in pavement subjected to transient traffic loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The use of artificial endoprostheses has become a routine procedure for knee and hip joints while ankle arthritis has traditionally been treated by means of arthrodesis. Due to its advantages, the implantation of endoprostheses is constantly increasing. While finite element analyses (FEA) of strain-adaptive bone remodelling have been carried out for the hip joint in previous studies, to our knowledge there are no investigations that have considered remodelling processes of the ankle joint. In order to evaluate and optimise new generation implants of the ankle joint, as well as to gain additional knowledge regarding the biomechanics, strain-adaptive bone remodelling has been calculated separately for the tibia and the talus after providing them with an implant. Methods: FE models of the bone-implant assembly for both the tibia and the talus have been developed. Bone characteristics such as the density distribution have been applied corresponding to CT scans. A force of 5,200 N, which corresponds to the compression force during normal walking of a person with a weight of 100 kg according to Stauffer et al., has been used in the simulation. The bone adaptation law, previously developed by our research team, has been used for the calculation of the remodelling processes. Results: A total bone mass loss of 2% in the tibia and 13% in the talus was calculated. The greater decline of density in the talus is due to its smaller size compared to the relatively large implant dimensions causing remodelling processes in the whole bone tissue. In the tibia, bone remodelling processes are only calculated in areas adjacent to the implant. Thus, a smaller bone mass loss than in the talus can be expected. There is a high agreement between the simulation results in the distal tibia and the literature regarding. Conclusions: In this study, strain-adaptive bone remodelling processes are simulated using the FE method. The results contribute to a better understanding of the biomechanical behaviour of the ankle joint and hence are useful for the optimisation of the implant geometry in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this project was to investigate very small strain elastic behaviour of soils under unsaturated conditions, using bender/extender element (BEE) testing. The behaviour of soils at very small strains has been widely studied under saturated conditions, whereas much less work has been performed on very small strain behaviour under unsaturated conditions. A suction-controlled double wall triaxial apparatus for unsaturated soil testing was modified to incorporate three pairs of BEEs transmitting both shear and compression waves with vertical and horizontal directions of wave transmission and wave polarisation. Various different techniques for measuring wave travel time were investigated in both the time domain and the frequency domain and it was concluded that, at least for the current experimental testing programme, peak-to-first-peak in the time domain was the most reliable technique for determining wave travel time. An experimental test programme was performed on samples of compacted speswhite kaolin clay. Two different forms of compaction were employed (i.e. isotropic and anisotropic). Compacted kaolin soil samples were subjected to constant suction loading and unloading stages at three different values of suction, covering both unsaturated conditions (s= 50kPa and s= 300kPa) and saturated conditions (s=0). Loading and unloading stages were performed at three different values of stress ratio (η=0, η=1 and η=-1 ). In some tests a wetting-drying cycle was performed before or within the loading stage, with the wetting-drying cycles including both wetting-induced swelling and wetting-induced collapse compression. BEE tests were performed at regular intervals throughout all test stages, to measure shear wave velocity Vs and compression wave velocity Vp and hence to determine values of shear modulus G and constrained modulus M. The experimental test programme was designed to investigate how very small strain shear modulus G and constrained modulus M varied with unsaturated state variables, including how anisotropy of these parameters developed either with stress state (stress-induced anisotropy) or with previous straining (strain-induced anisotropy). A new expression has been proposed for the very small strain shear modulus G of an isotropic soil under saturated and unsaturated conditions. This expression relates the variation of G to only mean Bishop’s stress p* and specific volume v, and it converges to a well-established expression for saturated soils as degree of saturation approaches 1. The proposed expression for G is able to predict the variation of G under saturated and unsaturated conditions at least as well as existing expressions from the literature and it is considerably simpler (employing fewer state variables and fewer soil constants). In addition, unlike existing expressions from the literature, the values of soil constants in the proposed new expression can be determined from a saturated test. It appeared that, in the current project at least, any strain-induced anisotropy of very small strain elastic behaviour was relatively modest, with the possible exception of loading in triaxial extension. It was therefore difficult to draw any firm conclusion about evolution of strain-induced anisotropy and whether it depended upon the same aspects of soil fabric as evolution of anisotropy of large strain plastic behaviour. Stress-induced anisotropy of very small strain elastic behaviour was apparent in the experimental test programme. An attempt was made to extend the proposed expression for G to include the effect of stress-induced anisotropy. Interpretation of the experimental results indicated that the value of shear modulus was affected by the values of all three principal Bishop’s stresses (in the direction of wave transmission, the direction of wave polarisation and the third mutually perpendicular direction). However, prediction of stress-induced anisotropy was only partially successful, and it was concluded that the effect of Lode angle was also significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their intriguing dielectric, pyroelectric, elasto-electric, or opto-electric properties, oxide ferroelectrics are vital candidates for the fabrication of most electronics. However, these extraordinary properties exist mainly in the temperature regime around the ferroelectric phase transition, which is usually several hundreds of K away from room temperature. Therefore, the manipulation of oxide ferroelectrics, especially moving the ferroelectric transition towards room temperature, is of great interest for application and also basic research. In this thesis, we demonstrate this using examples of NaNbO3 films. We show that the transition temperature of these films can be modified via plastic strain caused by epitaxial film growth on a structurally mismatched substrate, and this strain can be fixed by controlling the stoichiometry. The structural and electronic properties of Na1+xNbO3+δ thin films are carefully examined by among others XRD (e.g. RSM) and TEM and cryoelectronic measurements. Especially the electronic features are carefully analyzed via specially developed interdigitated electrodes in combination with integrated temperature sensor and heater. The electronic data are interpreted using existing as well as novel theories and models, they are proved to be closely correlated to the structural characteristics. The major results are: -Na1+xNbO3+δ thin films can be grown epitaxially on (110)NdGaO3 with a thickness up to 140 nm (thicker films have not been studied). Plastic relaxation of the compressive strain sets in when the thickness of the film exceeds approximately 10 – 15 nm. Films with excess Na are mainly composed of NaNbO3 with minor contribution of Na3NbO4. The latter phase seems to form nanoprecipitates that are homogeneously distributed in the NaNbO3 film which helps to stabilize the film and reduce the relaxation of the strain. -For the nominally stoichiometric films, the compressive strain leads to a broad and frequency-dispersive phase transition at lower temperature (125 – 147 K). This could be either a new transition or a shift in temperature of a known transition. Considering the broadness and frequency dispersion of the transition, this is actually a transition from the dielectric state at high temperature to a relaxor-type ferroelectric state at low temperature. The latter is based on the formation of polar nano-regions (PNRs). Using the electric field dependence of the freezing temperature, allows a direct estimation of the volume (70 to 270 nm3) and diameter (5.2 to 8 nm, spherical approximation) of the PNRs. The values confirm with literature values which were measured by other technologies. -In case of the off-stoichiometric samples, we observe again the classical ferroelectric behavior. However, the thermally hysteretic phase transition which is observed around 620 – 660 K for unstrained material is shifted to room temperature due to the compressive strain. Beside to the temperature shift, the temperature dependence of the permittivity is nearly identical for strained and unstrained materials. -The last but not least, in all cases, a significant anisotropy in the electronic and structural properties is observed which arises automatically from the anisotropic strain caused by the orthorhombic structure of the substrate. However, this anisotropy cannot be explained by the classical model which tries to fit an orthorhombic film onto an orthorhombic substrate. A novel “square lattice” model in which the films adapt a “square” shaped lattice in the plane of the film during the epitaxial growth at elevated temperature (~1000 K) nicely explains the experimental results. In this thesis we sketch a way to manipulate the ferroelectricity of NaNbO3 films via strain and stoichiometry. The results indicate that compressive strain which is generated by the epitaxial growth of the film on mismatched substrate is able to reduce the ferroelectric transition temperature or induce a phase transition at low temperature. Moreover, by adding Na in the NaNbO3 film a secondary phase Na3NbO4 is formed which seems to stabilize the main phase NaNbO3 and the strain and, thus, is able to engineer the ferroelectric behavior from the expected classical ferroelectric for perfect stoichiometry to relaxor-type ferroelectric for slightly off-stoichiometry, back to classical ferroelectric for larger off-stoichiometry. Both strain and stoichiometry are proven as perfect methods to optimize the ferroelectric properties of oxide films.